Биологический каталог

Принципы структурной организации нуклеиновых кислот

Автор В.Зенгер

ence of C-H • ¦ -O, C-H -N, and C-H - Cl hydrogen bonds, J. Amer. Chem. Soc, 104, 5063-5070 (1982).

321. Donohue J. Selected topics in hydrogen bonding. In: Structural Chemistry and Molecular Biology (A. Rich and N. Davidson, eds.), pp. 443-465, Freeman, San Francisco, 1968.

322. Goel A.. Rao C.N.R. Hydrogen bonds formed by C-H groups, Trans. Faraday Soc, 2828-2832, 1972.

323. Schweizer M. P., Chan S. I., Hebnkamp G. H.. Ts'o P. O. P. An experimental assignment of proton magnetic resonance spectrum of purine, J. Amer. Chem. Soc, 86, 696^700 (1964).

324. Маслова P. H.. Лесник E. А.. Варшавский Я. M. Влияние конформацни на скорость изотопного обмена водорода в полиадениловой кислоте и ее комплексах. Молек. биол, 1969, 3, 728 738.

325. Брусков В. И.. Бушуев В. Н.. Полтев В. И. Исследование методом ЯМР водородных связей типа С—О ¦••О в аналогах оснований нуклеиновых кислот. Молек. биол, 1980, 14, 316-322.

326. Amidon G. L.. Anik S., Rubin J. An energy partitioning analysis of base sugar intramolecular C-H---0 hydrogen bonding in nucleosides and nucleotides. In: Structure and Conformations of Nucleic Acids and Protein-Nucleic Acid Interactions (M. Sundaralingam and S.T. Rao, eds.), pp. 729-744, Univ. Park Press, Baltimore, 1975.

327. Wong Y.-S.. Lippard S.J. X-Ray crystal structure of a 2:2 chloroterpyridineplatinum(II)-adenosine-5'-monophosphate intercalation complex, J. Chem. Soc. Commun, 824-825, 1977.

328. Neidle S.. Taylor G.. Sanderson M.. Shieh H.-S.. Berman H. A 1:2 crystalline complex of ApA: proflavine: A model for binding to single-stranded regions in RNA, Nucleic Acids Res, 5, 4417-4422 (1978).

329. Viswamitra M.A.. Seshadri T. P., Post M.L. An uncommon nucleotide conformation shown by molecular structure of deoxyuridine-5'-phosphate and nucleic acid stereochemistry, Nature, 258, 542-544 (1975).

330. Barry C.D.. North ACT. GlaselJ.A.. Williams R.J.P.. Xavier A.V. Quantitative determination of mononucleotide conformations in solution using lanthanide ion shift and broadening NMR probes, Nature, 232, 236-245 (1971).

331 Evans F.E.. Sarma R.H. Nucleotide rigidity, Nature, 263, 567-572 (1976). 332. Berthod H.. Pullman B. Nucleotides: rigid or flexible? FEBS Lett, 30, 231-235 (1973).



333. Jack A.. Klug A. Ladner J.E. "Non-rigid" nucleotides in tRNA: A new correlation in the conformation of a ribose, Nature, 261, 250 251 (1976).

334. Sundaralingam M., Westhqf E. The "rigid" nucleotide concept in perspective, Int. J. Quant. Chem.: Quant. Biol. Symp, 6, 115 130 (1979).

335. Cruickshank D W. The role of 3d-orbitals in л-bonds between(a) silicon, phosphorus, sulphur or chlorine and (b) oxygen or nitrogen, J. Chem. Soc. (London), 5486 5504 (1961).

336. Corbridge D. E. C. The Structural Chemistry of Phosphorus, pp. 1 -8, Elsevier, New York, 1974.

337. Matheja J.. Degens E. T. Structural Molecular Biology of Phosphates, Gustav Fischer Verlag, Stuttgart, 1971.

338. Shomaker V.. Stevenson D.P. Some revisions of the covalent radii and the additivity rule for the lengths of partially ionic single covalent bonds, J. Amer. Chem. Soc, 63, 37-40 (1941).

339. Akishin P. A.. Rambidi N.G., Zasonn E.Z. An electron diffraction investigation • of the structure of the phosphorus pentoxide molecule, Sov. Phys. Crystallogr, . 4, 334 338 (1959).

340. Pauling L. Interatomic distances and bond character in the oxygen acids and related substances, J. Phys. Chem, 56, 361-365 (1952).

341. Baur W.H. The geometry of polyhedral distortions. Predictive relationships for the phosphate group, Acta Crystallogr, B, 30, 1195-1215 (1974).

342. Brown I. D.. Shannon R. D. Empirical bond-strength-bond-length curves for oxides, Acta Crystallogr, A, 29, 266 282 (1973).

343. Lipmann F. Metabolic generation and utilisation of phosphate bond energy, Adv. Enzymol, 1, 99-162 (1941).

344. Saenger W., Reddy B. S.. Muhlegger K.. Weimann G. X-Ray study of the lithium complex of NAD + , Nature, 267, 225-229 (1977).

345. Boyd D. В.. Lipscomb W. Electronic structures for energy-rich phosphates, J. Theor. Biol, 25, 403-420 (1969).

346. Fernandez-Alonso J.I. Electronic structures in quantum biochemistry, Adv. Chem. Phys, 7, 3-83 (1964).

347. Watson D.G., Kennard O. The structure of "high-energy" phosphate compounds. II. An X-ray analysis of cyclohexylammonium phosphoenolpyruvate, Acta Crystallogr, B, 29, 2358-2364 (1973).

348. Stryer L. Biochemistry, Freeman, San Francisco, 1975. [Имеется перевод 2-го издания: Страйер Л. Биохимия.-М.: Мир, 1985.]

349. Lehninger A.L. Biochemistry, 2nd ed. Worth, New York, 1975.

350. Alberty R. A. Standard Gibbs free energy, enhalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphate, J. Biol. Chem, 244, 3290 3302 (1969).

351. Emerson J., Sundaralingam M. Structure of the potassium salt of the modified nucleotide dihydrouridine З'-monophosphate hemihydrate: Correlation between the base pucker and sugar pucker and models for metal interaction with ribonucleic acid loops, Acta Crystallogr, B, 36, 537-543 (1980).

52. Patel D.J. Proton and phosphorus NMR studies of d-CpG(pCpG)„ duplexes S in solution. Helix-coil transition and complex formation with actinomycin-D, Biopolymers, 15, 533 558 (1976).

353. Lee C.-H.. Ezra F.S.. Kondo N.S.. Sarma R.H.. Danyluk S.S. Conformational

> properties of dinucleoside monophosphates in solution: Dipunnes and

> dipyrimidines. Biochemistry, 15, 3627-3639 (1976).

354. Dobson С. M, Geraldes C.F.G.C.. Ratcliffe G, Williams R.J. P Nuclear-

33 509



magnetic-resonanse studies of 5'-ribonucleotide and 5'-deoxyribonucleotide conformations in solution using the lanthanide probe method, Eur. J. Biochem, 88, 259-266 (1978).

355. Inagaki F., Tasumi M., Miyazawa T. Structures and populations of conformers of nucleoside monophosphates in solution. I. General methods of conformation search with lanthanide-ion probes and spin-coupling constants and application to uridine-5:monophosphate, Biopolymers, 17, 267-289 (1978).

356. Thornton J. M, Bayley P. M. Conformational energy calculations for dinucleotide molecules. A study of the component mononucleotides adenosine 5'-monophosphate, nicotinamide mononucleotide and adenosine 3'-monophos-phate, Biochem. J, 149, 585-596 (1975).

357. Pullman В., Perahia D., Saran A. Molecular orbital calculations ob the conformation of nucleic acids and their constituents. III. Backbone structure of di- and polynucleotides, Biochim. Biophys. Acta, 269, 1-14 (1972).

358. Camerman N., FawcettJ.K., Cornerman A. Molecular structure of a deoxyribose-dinucleotide, sodium thymidylyl-5',3'-thymidilate-5' hydrate (pTpT), and a possible structural model for polythymidilate, J. Mol. Biol, 107, 601-621 (1976).

359. Viswamitra M, Kennard O., Jones P. G., Sheldrick G. M, Salisbury S., Falvello L., Shakked Z. DNA double helical fragment at atomic resolution, Nature, 273, 687-688 (1978).

360. Kim S.-H., Berman H. M., Seeman N. C, Newton M. D. Seven basic conformations of nucleic acid structural units, Acta Crystallogr, B, 29, 703-710 (1973).

361. Newton M.D. A model conformational study of nucleic acid phosphate ester bonds, The torsional potential of dimethyl phosphate monoanion, J. Amer. Chem. Soc, 95, 256-258 (1973).

362. Perahia D., Pullman В., Saran A. Molecular orbital calculations on the conformation of nucleic acids and their constituents. IX. The geometry of the phosphate group: Key to the conformation of polynucleotides? Biochim. Biophys. Acta, 340, 299-313 (1974).

363. Sasisekharan V, Lakshminarayanan A. V. Stereochemistry of nucleic acids and polynucleotides. VI. Minimum energy conformations of dimethyl phosphate, Biopolymers, 8, 505-514 (1969).

364. Tosi C, Lipari G. Molecular orbital computations on the conformational energy of ethyl methyl phosphate, Theoret Chim. Acta, 60, 41-51 (1981).

365. Lemieux R. U. Effects of unshared pairs of electrons and their solvation on conformational equilibria. Pure Appl. Chem, 25, 527-548 (1971).

366. Wolfe S. The gauche effect. Some stereochemical consequences of adjacent electron pairs and polar bonds, Acc. Chem. Res, 5, 102-111 (1972).

367. Radom L.. Hehre W.J.. Pople J.A. Molecular orbital theory and the electronic structure of organic compounds. XIII. Fourier component analysis of internal rotation potential functions in saturated molecules, J. Amer. Chem. Soc, 94, 2371-2381 (1972).

368. Brunck Т. K.. Weinhold F. Quantum-mechanical studies on the origin of barriers to internal rotation about single bonds, J. Amer. Chem. Soc, 101, 1700-1709 (1979).

369. Yathindra N.. Sundaralingam M. Backbone conformations i* secondary and tertiary structure units of nucleic acids. Constraint in the phosphodiester conformation, Proc. Nat. Acad. Sci. USA, 71, 3325-3328 (1974).

370. Olson W. K., Flory P. J. Spatial configurations of polynucleotide chains. I. Steric



interactions in polyribonucleotides: A virtual bond model, Biopolymers, 11, 1-23 (1972).

M71. Stellman S.D., Hingerty В., Broyde S.D., Subramanian E., Sato Т., Langridge R. Structure of guanosine-3',5'-cytidine monophosphate. I. Semi-empirical potential energy calculations and model-building, Biopolymers, 12, 2731-2750 (1973).

[ 372. Govil G. Nucleic acid conformations and biological activitb, Jerus. Sympos. Quant. Chem. Biochem, 5, 283-295 (1973). 373. Tewari R, Nanda R. K., Govil G. Quantum chemical studies on the conformational structure of nucleic acids. IV. Calculation of backbone structure by CNDO method, J. Theor. Biol, 46, 229-239 (1974).

у 374. Perahia D., Pullman B, Saran A. Molecular orbital calculations on the conformation of nucleic acids and their constituents. XI. The backbone structure of 3', 5' and 2',3'-linked diribose monophosphates with different sugar puckers, Biochim. Biophys. Acta, 353, 16-27 (1974).

F375. Govil G. Conformational structure of polynucleotides arount the O-P bonds: Refined parameters for CPF calculations, Biopolymers, 15, 2303-2307 (1976).

I 376. Srinivasan A. R., Yathindra N.. Rao V. S. R., Prakash S. Preferred phosphodiester 1 conformations in nucleic acids. A virtual bond torsion potential to estimate lone-pair interactions in a phosphodiester, Biopolymers, 19, 165-171 (1980).

>•377. Kitamura K., Wakahara A., Mizuno H., Baba Y, Tomita K.-I. Conformation ally "concerted" changes in nucleotide structure. A new description using circular correlation and regression analyses, J. Amer. Chem. Soc, 103, 3899-3904 (1981). 378. Kitamura K., W/akahara A., Mizuno H., Amizaki Т., Baba Y, Tomita K.-T. f A quantitative description of conformational change in nucleic acid helices. Submitted for publication.

^379. Yayaraman S., Yathindra N. Theoretical evidence for the occurence of sequence-dependent helical variations in B-DNA dodecamer. A backbone near-neighbour bond correlation between sugar residue and phosphodiester, Nucleic Acids Res, Submitted for publication. 380. Olson V/. K. The spatial configuration of ordered polynucleotide chains. I. Helix formation and base stacking, Biopolymers, 15, 859-878 (1976).

1381. Yathindra N.. Sundaralingam M. Analysis of possible helical structures of nucleic acids and polynucleotides. Application of (n-h) plots, Nucleic Acids Res, 3, 729-747 (1976).

f382. Sundaralingam M., Yathindra N. Probing possible left- and right-handed I polynucleotide helical conformations from n-h plots. Glycosil and backbone i torsional variation on handedness of helix, Int. J. Quant. Chem.: Quant. Biol. ^ Symp, 4, 285-303 (1977).

I 383. Sasisekharan V., Pattabiraman N. Structure of DNA predicted from * stereochemistry of nucleoside derivatives, Nature, 275, 159-162 (1978).

383a. Einspahr H., Cook W. J., Bugg С. E. Conformational flexibility in single-stranded 1 oligonucleotides: Crystal structure of a hydrated calcium salt of adenylyl-(3',5')-adenosine, Biochemistry, 20, 5788-5794 (1981).

1384. Gupta G., Bansal M., Sasisekharan V. Conformational flexibility of DNA: Polymorphism and handedness, Proc. Nat. Acad. Sci. USA, 77 6486-6490 1 (1980).

i 385. De Santis P., Morosetti S., Pallesche A., Savino M. Conformational and struc-f tural constraints in double-helical polynucleotides, Biopolymers, 20, 1707-1725 f (1981).

г 386. Gupta G., Bansal M., Sasisekharan V. Polymorphism and conformational




flexibility of DNA: Right and left handed duplexes, Int. J. Biol. Macromol, 2, 368-379 (1980).

387. Poltev V. I., Molova L. A.. Zhorov B. S.. Govyrin V. A. Simulation of conformational possibilities of DNA via calculation of nonbonded interactions of complementary dinucleoside phosphate complexes, Biopolymers, 20, 1-15 (1981).

388. Mitsui Y.. Langridge R.. Shortle B.E.. Cantor C.R.. Grant R.C.. Kodama M.. Wells R. D. Physical and enzymatic studies on poly d (I-C) • poly d(I-C), an unusual double-helical DNA, Nature, 228, 1166-1169 (1970).

389. Malathi R.. Yathindra N. Virtual bond probe to study ordered and random coil conformations of nucleic acids, Int. J. Quant. Chem, 20, 241 257 (1981).

390. Yayaraman S.. Yathindra N. Probing possible left- and right-handed poly(dinucleotide) helical conformations from (n-h) plots. Models for polysequential nucleotides, Int. J. Quant. Chem, 20, 211 230 (1981).

391. Sasisekharan V.. Gupta G.. Bansal M. Sequence-dependent molecular conformations of polynucleotides: Right and left-handed helices, Int. J. Biol. Macromol, 3, 2-8 (1981).

392. Arnott S.. Hukins D. W. L. The dimensions and shapes of the furanose rings in nucleic acids, Biochem. J, 130, 453^165 (1972).

393. Evans F. ?.. Kaplan N. O. 8-Alkylaminoadenyl nucleotides as probes of dehydrogenase interactions with nucleotide analogs of different glycosyl conformation. J. Biol. Chem, 251, 6791 6797 (1976).

394. Pohorille A.. Perahia D.. Pullman B. Molecular orbital studies on the conformations of 8-amino- and 8-dimethylammoadenosine 5'-monophosphate. Biochim. Biophys. Acta, 517, 511-516 (1978).

395. Fluck E.. Maas K. Themen zur Chemie des Phosphors, p. 45, A Hiithig Verlag, Heidelberg, 1973.

396. Holbrook S.R.. SussmanJ.L., Warrant R.W.. Kim S.-H. Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications, J. Mol. Biol, 123, 631-660 (1978).

397. Konnert J, Karle I. L.. Kxrle J. The structure of dihydrothymidine. Acta Crystallogr, B, 26, 770 778 (1970).

398. Grand A.. Cadet J. Crystal and molecular structure of ( )-(5S)-5-hydroxy-5,6-dihydrothymidine, Acta Crystallogr, B, 34, 1524 1528 (1978).

399. Tougard P. Structure cristalline et moleculaire de la l-f3-D-arabinofuanosil-thy-mine, isomorphe de la l-P-D-arabinofuranosyl-5-bromo-uracile, Acta Crystallogr, B, 29, 2227 2232 (1973).

400. Sutton L. E. Chemische Bindung und Molekiilstruktur, Springer-Verlag, Heidelberg, 1961.

401. Clauwaert J, Stockx J. Interactions of po

страница 64
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Скачать книгу "Принципы структурной организации нуклеиновых кислот" (9.68Mb)

[каталог]  [статьи]  [доска объявлений]  [обратная связь]

Rambler's Top100 Химический каталог

Copyright © 2009