Биологический каталог




Принципы структурной организации нуклеиновых кислот

Автор В.Зенгер

араметр является целочисленным инвариантом для всех топологических форм, а райзинг WT и кручение Tw могут принимать любые значения. Число сверхвитков определяется райзингом W, (для плоского кольца Wr = 0). Сильное влияние на топо-_логию молекулы оказывает образование левой спирали Z-ДНК (при \ переходе одного витка правой спирали в левый виток LK меняется на l.~ 2). Одно- и двухцепочечные ДНК могут образовывать и другие топологические формы: узлы, катенаны, кресты и т.д., биологическая роль которых не установлена.

Acknowledgments

Acknowledgments is gratefully made for permission to reproduce material as follows:

Figures 6.3, 6.15, 6.16, 6.17, 6.18, 11.4, 11.5, 11.6, 12.1, 12.3, 12.4, 128, 13.14, 15.2, 15.3, 16.3, 17.6, 17.7, and 18.11 are reprinted by permission from the Journal of Molecular Biology, copyright Academic Press Inc. (London) Ltd.

Table 3.2 is reprinted by permission from the Journal of Theoretical Biology, copyright Academic Press Inc. (London) Ltd.

Reprinted with permission from the Journal oj the American Chemical Society are Figure 6.10, copyright 1967 American Chemical Society; Figures 2.8 and 15.10, copyright 1972 American Chemical Society; Figures 3.8 and 7.6, copyright 1977 American Chemical Society; Figures 4.6 and 13.13, copyright 1978 American Chemical Society.

Reprinted by permission from Nature are Figure 18.7, copyright 1955 Macmillan Journals Ltd; Figure 10.5, copyright 1971 Macmillan Journals Ltd; Table 6.10, copyright 1973 Macmillan Journals Ltd; Figure 4.24, copyright 1977 Macmillan Journals Ltd; Figure 4.29 A and Table 4.4, copyright 1978 Macmillan Journals Ltd; Figure 17.10, copyright 1979 Macmillan Journals Ltd; Figures 11.3, 16.7, and 16.8, copyright 1980 Macmillan Journals Ltd; Figures 18.17 and 18.18, copyright 1981 Macmillan Journals Ltd; Figures 8.5 and 17.12, copyright 1982 Macmillan Journals Ltd.

Reprinted by permission from Science is Figure 1.3, copyright 1969 by the American Association for the Advancement of Science.

Reprinted by permission of the authors from Proceedings of the National Academy of Science, U.S.A. are Figures 3.5, 6.5, 6.6, 14.2, 14.3, 14.5, 16.6, 18.3, 18.5, 18.12, 19.2, and 19.7.

Figures 4.27, 6.14, 6.20, and 16.5 are reprinted by permission from Biopolymers, copyright John Wiley and Sons. Figure 15.1 is reprinted by permission from Advances in Enzymology, copyright John Wiley and Sons.

Figures 19.4, 19.6, 19.8 are from "The Nucleosome" by Roger D. Romberg and Aaron Klug, copyright 1981 by Scientific American, Inc. All rights reserved. Box 19.3 is from "Supercoiled DNA" by William R. Bauer, F. H. C. Crick, and James H. White, copyright 1980 by Scientific American, Inc. All rights reserved.

Figure 19.1 is reprinted by permission from Cell, copyright M.I.T. Press.

Литература

1. Furberg S. The crystal structure of cytidine, Acta Crystallogr., 3, 325-331 (1951).

2. Dekker C. R., Michelson A. M., Todd A. R. Nucleotides, Part XIX, Pyrimidine I deoxyribonucleoside diphosphates, J. Chem. Soc, 947-951 (1953).

3. Zamenhof S., Brawermann C, Chargqff E. On the desoxypentose nucleic acids from several microorganisms, Biochim. Biophys. Acta, 9, 402-405 (1952).

4. Astbury W.T. X-ray studies of nucleic acids, Symp. Soc. Exp. Biol. (Nucleic I Acids), 1, 66-76 (1947).

5. Gulland J. M. The structures of nucleic acids, Cold Spring Harbor Symp. Quant. Biol., 12, 95-103 (1947).

6. Wilkins M. H. F. Molecular configuration of nucleic acids, Science, 140, t 941-950. Angew. Chem. 75, 429-439 (1963).

7. Watson J. D., Crick F. H. C. A structure of deoxyribose nucleic acid, Nature, Г 171, 737-738 (1953)

8. Crick F. H. C, Watson J. D. The complementary structure of deoxyribonucleic i acid, Proc. Roy. Soc. (London), Ser. A, 223, 80-96 (1954).

9. Watson J. D. The Double Helix, Weidenfeld and Nicholson, London, 1968.

10. Britten R., Davidson E. Gene regulation for higher cells: A theory, Science, 165, L 349-357 (1969).

11. Paulson J.R., LaemmliU.K. The structure of histone-depleted metaphase I chromosomes, Cell, 12, 817-828 (1977).

12. IUPAC-IUB Commission on Biochemical Nomenclature (CBN), Abreviations I and symbols for nucleic acids, polynucleotides and their constituents, Eur. J.

> Biochem., 15, 203-208 (1970); for correction, see Eur. J. Biochem., 25, 1-4 (1972).

13. IUPAC Commision on Macromolecular Nomenclature, Stereochemical definitions and notations relating to polymers, Pure AppL Chem., 51, 1101-1121 (1979).

14. IUPAC, Definitive Rules for Nomenclature of Organic Chemistry, Section A. f Hydrocarbons, Section B, Fundamental heterocyclic systems, J. Amer. Chem.

> Soc, 82, 5545-5574.

15. Pullman В., Saenger W., Sasisekharan V, Sundaralingam M., Wilson H. R. ^ Recommendations of standard conventions and nomenclature for the \ description of the conformation of polynucleotide chains, Jerus. Symp. Quant.

Chem. Biochem., 5, 815-820 (1973).

16. Seeman N. C, Rosenberg J. M., Suddath F. L, Pare Kim J. J., Rich A. A simplified alphabetical nomenclature for dihedral angles in the polynucleotide

I backbone, J. Mol. Biol., 104, 142-143 (1976).

496

Литература

17. Arnott S., Hukins D. W. L. Conservation of conformation in mono-and polynucleotides, Nature, 224. 886-888 (1969).

18. Lakshminarayanan A. V, Sasisekharan V. Stereochemistry of nucleic acids and polynucleitides. II. Allowed conformations of the monomer unit for different ribose puckering, Biochim. Biophys. Acta, 204, 49 53 (1970).

19. IUPAC-IUB Joint Commission on Biochemical Nomenclature, Abreviations and symbols for the descriptions of conformations of polynucleotide chains, Eur. J. Biochem., 131, 9 15 (1983).

20. Suhadolnik R. J. Nucleoside Antibiotics, Wiley, New York (1970).

21. Bloch A. (ed.). Chemistry, Biology and Clinical Uses of Nucleoside Analogs. Annu. N. Y. Acad. Sci., 225 (1975).

22. IUPAC-IUB Commision on Biochemical Nomenclature, Abbreviations and symbols for the description of the conformation of polypeptide chains, Eur. J. Biochem., 17, 193 201 (1970).

23. Klyne W., Prelog V. Description of steric relationships across single bonds, Experientia, 16, 521-523 (1960).

24. IUPAC. Tentative rules for the nomenclature of organic chemistry. Section E. Fundamental stereochemistry, Eur. J. Biochem., 18, 151-170 (1971).

25. Hall L. D. Conformations of some ribofuranosides, Chem. Ind. (London), 950 951, 1963

26. Jardetzky C. D. Proton magnetic resonance studies on purines, pyrimidines, ribose nucleosides and nucleotides. III. Ribose conformation, J. Amer. Chem. Soc, 82, 229 223 (1960).

27. Kilpatrick J. E., Pitzer K. S., Spitzer R. The tehrmodynamics and molecular structure of cyclopentane, J. Amer Chem. Soc, 69, 2483-2488 (1947).

28. Pitzer K. S., Donath W. E. Conformations and strain energy of cyclopentane and its derivatives, J. Amer. Chem. Soc, 81, 3213 3218 (1959).

29. Hall L. D., Steiner P. R., Pedersen C. Studies of specifically fluorinated carbohydrates, Part VI. Some pentafuranosyl fluorides, Can. J. Chem, 48, 1155 1165 (1970).

30. Altona C, Geise H.J., Romers C. Conformation of nonaromatic ring compounds. XXV. Geometry and conformation of ring D in some steroids from X-ray structure determinations, Tetrahedron, 24, 13 32 (1968).

31. Altona C, Sundaralingam M. Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation, J. Amer. Chem. Soc, 94, 8205-8212 (1972).

32. Levitt M, Warshel A. Extreme conformational flexibility of the furanose ring in DNA and RNA, J. Amer. Chem. Soc, 100, 2607-2613 (1978).

33. Donohue J, Trueblood K. N. Base pairing in DNA, J Mol. Biol, 2, 363-371 (1960).

34. Haschemeyer A.E.V., Rich A. Nucleoside conformations: An analysis of steric barriers to rotation about the glycosidic bond, J. Mol. Biol, 27, 369-384 (1967).

35. Sundaralingam M. The concept of a conformationally "rigid" nucleotide and its significance in polynucleotide conformational analysis, Jerus. Symp. Quant. Chem. Biochem, 5, 417-456 (1973).

36 Prusiner P., Sundaralingam M. Stereochemistry of nucleic acids and their constituents. XXV. Crystal and molecular structure of allopurinol, a potent inhibitor of xantine oxidase, Acta Cryctallogr, B, 28, 2148-2152 (1972).

37. Shefter E., Trueblood K. N. The crystal and molecular structure of D( + + )Ba-uridine-5'-phosphate, Acta Crystallogr, 18, 1067-1077 (1965).

38. Arnott S. The geometry of nucleic acids, Prog. Biophys. Mol. Biol, 21, 267-319 (1970).

Литература

497

39. Lai Т. F., Marsh R. E. The crystal structure of adenosine, Acta Crystallogr., B, 28, 1982 1989 (1972).

40. Green E. A., Rosenstein R. D., Shiono R., Abraham D. J, Trus B. L, Marsh R. E. The crystal structure of uridine, Acta Crystallogr., B, 31, 102-108 (1975).

41. Tavale S. S, Sobell H. M. Crystal and molecular structure of 8-bromoguanosine and 8-bromoadenosine, two purine nucleosides in the syn conformation, J. Mol. Biol, 48, 109-123 (1970).

42. Suck D, Saenger W. Molecular and crystal structure of 6-methyluridine. A pyrimidine nucleoside in the syn conformation, J. Amer. Chem. Soc., 94, 6520-6526 (1972).

43. Glusker J. P., Trueblood K. N. Crystal Structure Analysis, A Primer. Oxford Univ. Press, London, 1972

44. Stout G.H., Jensen L.H. X-Ray Structure Determination-A Practical Guide, I McMillan, London, 1968.

45. Buerger M. J. Contemporary Crystallography, McGraw-Hill, New York, 1970.

46. Woolfson M. M. An Introduction to X-Ray Crystallography, Cambridge Univ. Press, London, 1970.

47. Sherwood D. Crystals, X-Rays and Proteins, Longman, London, 1976.

48. ArndtU.W., Willis B.T.M. Single Crystal Diffractometry, Cambridge Univ. f, Press, London 1966.

49. Henry N. F. M., Lonsdale K. (eds.). International Tables for X-Ray Crystallography, Vols. II-IV, Kynoch Press, Birmingham, 1968.

50. Mizushima S.-I., Shimanouchi T. Possible polypeptide configurations of proteins from the viewpoint of internal rotation potential, Adv. Enzymol., 23, 1-27 (1961).

51. Ramachandran G. N., Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations, J. Mol. Biol., 7, 95 99 (1963).

52. Schellman J. A., Schellman C. The conformation of polypeptide chains in proteins. In: The Proteins (H. Neurath, ed.), 2nd ed. Vol. 2, pp. 1-139, Academic Press, New York, 1964.

53. Nemethy G, Scheraga H. A. Theoretical determination of a polypeptide chain by a computer method, Biopolymers, 3, 155-184 (1965).

54. Sasisekharan V., Lakshminaranyanan A. V, Ramachandran G. N. Stereochemistry of nucleic acids and polynucleotides. I. Theoretical determination of the allowed conformation of the monomer unit. In: Conformation of Biopolymers

I (G.N. Ramachandran, ed.), Vol. 2, pp. 641-654, Academic Press, London (1967)

55. Scheraga H. A. Calculations of conformations of polypeptides, Adv. Phys. Org. Chem.^ 6, 103-183 (1968).

56. Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and k proteins, Adv. Protein Chem, 23, 283-437 (1968).

57. Lakshminarayanan A. V, Sasisekharan V. Stereochemistry of nucleic acids and polynucleotides. IV. Conformational energy of base-sugar units, Biopolymers, 8, 475-488 (1969).

58. Yatindra N., Sundaralingam M. Correlation between the backbone and side chain conformations in 5'-nucleotides. The concept of a "rigid" nucleotide conformation, Biopolymers, 12, 297-314 (1973).

59. Millner О. E., Jr., Andersen J. A. The conformational analysis of adenosine triphosphate by classical potential energy calculations, Biopolymers, 14, 2159-2179 (1975).

60. Broyde S. В., Wartell R. M, Stellman S. D., Hingerty В., Langridge R., Classical

32-509

498

Литература

potential energy calculations for АрА, CpC, GpG and UpU. The influence of the bases on RNA subunit coformations, Biopolymers, 14, 1597-1613 (1975).

61. Olson W. K., Flory P. J. Spatial configurations of polynucleotide chains. II. Conformational energies and average dimensions of polyribonucleotides, Biopolymers, 11, 25-56 (1972).

62. Kitaigorodsky A. 1, Dashevsky V. G. Conformational analysis of overcrowded aromatic molecules, Tetrahedron, 24, 5917 5928 (1968).

63. Govil G, Saran A. Quantum chemical studies of nucleic acids. I. Extended Hiickel calculations on D-ribose phosphate, J. Theor. Biol, 30, 621-630 (1971)

64. Lifson S. Potential energy functions for structural molecular biology. In: Methods in Structural Molecular Biology (D. B. Davies, W. Saenger, and S. S. Danyluk, eds.), pp. 359-385, Plenum Press, London, 1981.

65. Jordan F. Lennard-Jones potential calculations of the barrier to rotation about the glycosidic C-N linkage in selected purine nucleosides and nucleotides. A direct comparison of the results of 6-12 potential calculations with results of semiempirical molecular orbital studies, J. Theor. Biol, 41, 375 395 (1973).

66. Klopman G, Evans R. C. The neglect-of-differential-Overlap methods of molecular orbital theory. In: Electronic Structure Calculation (G.A. Segal, ed.), pp. 29-67, Plenum Press, New York, 1977.

67. Pullman B, Pullman A., Quantum Biochemistry, Intersaence, New York, 1963.

68. Del Re G. A simple MO-LCAO method for the calculation of charge distributions in saturated organic molecules, J. Chem. Soc, 4031-4040 (1958).

69. Del Re G. Theoretical procedures for the study of biochemical 6-systems In: Electronic Aspects of Biochemistry (B. Pullman, ed.), pp. 221 235, Academic Press, New York/London, 1964.

70. Pullman A., Pullman B. Aspects of the electronic structure of the purine and pyrimidine bases of the nucleic acids and of their interactions, Adv. Quant Chem, 4, 267-325 (1968).

71. Jordan F, Pullman B. Molecular orbital calculations on the preferred conformation of nucleosides, Theor. Chim. Acta (Berlin), 9, 242-252 (1968).

72 Renugopalakrishnan V, Lakshminarayanan A. V, Sasisekharan E Stereochemistry of nucleic acids and polynucleotides. III. Electronic charge distribution, Biopolymers, 10, 1159 1167 (1971).

73. Scott R. A., Scheraga H. A. Method for calculating internal rotation barriers, J. Chem. Phys, 42, 2209-2215 (1965).

74. Warshel A. The consistent force field and its quantum chemical extension. In: Modern Theoretical Chemistry (G. Segal, ed.), Plenum Press, New York, Vol. 7, pp. 133-172 (1977).

75. Trinajstic N. Hiickel theory and Topology. In: Electronic Structure Calculation (G.A. Segal, ed.), pp. 1 28, Plenum Press, New York, 1977.

76. Jordan F. An extenden Hiickel molecular orbital approach to the study of the electronic structures and barriers to syn-anti interconversion in syn purine nucleosides, Biopolymers, 12, 243-255 (1973).

77. Malrieu J.-P. The PCILO method. In: Electronic Structure Calculation (G.A. Segal, ed.), pp. 69 103. Plenum Press, New York, 1977.

78. Pullman В., Pullman A. Molecular orbital calculations on the conformation of amino-acid residues of proteins, Adv. Protein Chem, 28, 348-526 (1974).

79. Roothaan С. C.

страница 60
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Скачать книгу "Принципы структурной организации нуклеиновых кислот" (9.68Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Rambler's Top100 Химический каталог

Copyright © 2009
(13.11.2019)