Биологический каталог




Принципы эволюции

Автор П.Кейлоу

о между организмами, но и внутри них. Еще в 1881 г. Вильгельм Ру в своей книге «Борьба частей в организме» (Wilhelm Roux, Der Kampf der Theile im Organismus, Leipzig) также высказал предположение, что в организме, возможно, происходит борьба (а следовательно, отбор) между тканями и органами за ограниченные ресурсы, получаемые с пищей, и что она может оказаться важной силой в эволюции. По иронии судьбы, Вейсман также признавал возможность внутриорганизменного отбора, считая, что он может играть важную роль в морфогенетической пластичности, но затем отбросил его как несущественный элемент эволюции.

2.3. Неодарвинизм и популяционная генетика

Разрешив отдельные проблемы, с которыми столкнулась теория Дарвина, менделизм вместе с тем породил и ряд новых. Во-первых, стали высказываться предположения, что такие генетические явления, как доминирование, возможно, играют более важную роль в определении признаков популяции, чем сам естественный отбор. Ведь проводимые в лаборатории скрещивания между особями, гомозиготными по доминантным и особями, гомозиготными по рецессивным генам, приводят к численному превосходству доминант (см. разд. 2.1.1). Во-вторых, дискретная, корпускулярная природа наследственных факторов должна означать, что изменения этих факторов также дискретны и что каждое изменение, по всей вероятности, будет иметь значительный эффект. Изменчивость, следовательно, носит характер больших скачков, а не мелких непрерывных изменений, как это представлял себе Дарвин.

Де Фриз в своей книге «Мутационная теория» (De Vries, The Mutation Theory, Open Court Publ. Co., 1909) проводил различие

Механизмы наследственности 41

между непрерывной индивидуальной изменчивостью и дискретными скачкообразными изменениями. Он применял термин мутация только к последним (однако, как должно было стать очевидным из всего сказанного выше, этот термин применяется теперь в более общем смысле для обозначения любого спонтанного случайного изменения, большого или малого). Как считал де Фриз, именно эти мутации контролируют эволюционное изменение и играют более важную роль, чем сам естественный отбор.

Ранние менделисты, подобно де Фризу, преуменьшали эффективность естественного отбора и подчеркивали первостепенное значение менделевских соотношений и мутаций в формовке эволюции. На некоторых дарвинистов это произвело такое впечатление, что они начали высказывать сомнения в обоснованности менделизма, и между этими двумя группами начались ожесточенные дебаты. Другие эволюционисты, понимая важность менделизма и таящиеся в нем возможности, вознамерились примирить его с дарвиновской теорией. Поскольку возникшая в результате их усилий синтетическая теория эволюции выходила за рамки механизмов, предложенных Дарвином, ее часто называют неодарвинизмом. Немалую роль в решении этой проблемы сыграл переход от рассмотрения последствий скрещивания между двумя особями к последствиям скрещивания между особями в популяциях; менделевские соотношения превратились, таким образом, в частоты различных генотипов в данной популяции, а генетические и эволюционные изменения выражались в изменениях частот соответствующих генов. В результате генетика превратилась в популяционную генетику, которая развивалась параллельно с неодарвинизмом. В дальнейших разделах настоящей главы дан обзор основных моментов этого развития и показано, как популяционная генетика пыталась ответить на ключевые вопросы, поставленные менделистами.

2.3.1. Уравнение Харди—Вайнберга

В 1908 г. Дж. Харди (Q. Н. Hardy) и В. Вайнберг (W. Weinberg) независимо друг от друга занялись изучением следующего вопроса, поднятого менделистами: могут ли изменения генных частот происходить под влиянием одних только ограничений, налагаемых законами Менделя? Для того чтобы ответить на этот вопрос, они представили себе популяцию, в которой происходит случайное скрещивание (панмиксия) и численность которой достаточно велика, чтобы полученные результаты можно было считать статистически достоверными. Отметим, что в подобной ситуации (в отличие от экспериментов Менделя) нельзя точно знать, какие именно будут происходить скрещивания, од42 Глава 2

Механизмы наследственности 43

нако можно строить предположения о вероятности тех или иных скрещиваний на основе частоты особей, несущих определенные гены. Харди и Вайнберг допустили, что в их воображаемой популяции имеются два аллеля, Л и а, с первоначальными частотами соответственно р и q, так что p + q=l (т. е. это условие позволяет описать все возможные случаи, поскольку в данном локусе нет других аллелей). При этом могут образоваться следующие диплоидные генотипы: АА, Аа и аа. Харди и Вайнберг допускали свободное скрещивание, так что вероятность встречи двух А-гамет и образования особи АА равна р2. Это следует из основной теоремы теории вероятностей, согласно которой вероятность совместного появления двух последовательных событий (скажем, выпадения два раза подряд орла при бросании монеты) равно произведению вероятностей каждого из них, т. е.

вероятность выпадения орла равна j- или (j-)2. Рассуждая

подобным же образом, получим, что вероятность aa=q2, а вероятность Aa—pq. Согласно правилу Менделя, частота гетерозигот должна быть вдвое выше частоты каждой из гомозигот, так что ожидаемые частоты будут следующими: p2+2pq+q2. Частота гена А в новом поколении выражается формулой {p2+pq)/(p2+ + 2pq+q2), которую можно преобразовать к виду [p{p+q)]l J(P+q)2, а поскольку p+q=l, она сводится к р. Однако общая частота генов в этом локусе равна, согласно определению, 1, так что частота аллелей а составляет (1—р), т. е. q (опять-таки по определению). Итак, частоты генов остались в точности прежними и будут продолжать оставаться такими в каждом из последующих поколений. Следовательно, менделевские механизмы сами по себе не вызывают изменений в частотах генов и поэтому не могут быть важным фактором, направляющим эволюционное изменение. Очевидно, в этом должны участвовать другие факторы.

2.3.2. Холдейн, Фишер и значение отбора

Может ли естественный отбор распознавать мелкие различия в генетически детерминированных признаках, оказывающие лишь небольшое воздействие на выживание и размножение их носителей? Могли ли эти мелкие случайные различия сами по «ебе вызывать существенные изменения? Или же нам следует .допустить, что основным материалом для эволюции служат .крупные скачкообразные изменения? Эти вопросы поставили ,Дж. Б. С. Холдейн в своей книге «Генетическая теория эволюции» (J. В. S. Haldane, Genetical Theory of Evolution, Longmans, 1930) и P. А. Фишер в «Факторах эволюции» (R. A. Fisher, The Causes of Evolution, Oxford, 1932). Эти две книги сыграли чрезвычайно важную формирующую роль в дальнейшем развитии неодарвинизма. Еще одной важной фигурой в его развитии был Сьюэлл Райт (Sewall Wright). Однако подход Райта к этим вопросам настолько отличался от позиций Холдейна и Фишера, что мы рассмотрим его отдельно в разд. 2.3.3.

И Фишер, и Холдейн выражали интенсивность отбора через изменения в частотах генов. Те аллели, частота которых относительно других аллелей выше, считаются более приспособленными, поэтому изменение относительных частот аллелей служит мерой «неодарвиновской» приспособленности. (Обратите внимание, что нельзя ограничиваться рассмотрением абсолютных изменений, так как при понижении абсолютной плотности данного аллеля в популяции он все же может оставлять больше своих представителей, чем другие аллели, если плотность этих других аллелей уменьшается быстрее. В таком случае он все еще более приспособлен, поскольку в преобладающих в данной среде условиях он по сравнению с другими аллелями оказался более преуспевающим.)

Проще всего начать анализ с динамики генов в гаплоидных популяциях (т. е. в популяциях, в которых каждая особь содержит по одному аллелю на локус); в табл. 2.2. представлены основные расчеты для двух аллелей (А и а) в такой популяции. Холдейн измерял приспособленность, сравнивая чистые скорости прироста R, т. е. делил значение R для каждого аллеля на максимальное значение R, так что приспособленность наиболее преуспевающего аллеля становится равной 1, а приспособленность других аллелей — какой-то доле 1. Этот индекс обычно обозначают буквой w и называют селективной или адаптивной ценностью. В некоторых случаях эту величину можно записать в виде 1 —w (=s), что выражает степень, в которой данный ген подвергается отрицательному отбору; s называют коэффициентом отбора.

44 Глава 2

Механизмы наследственности 45

Это крайне упрощенный пример. Время генерации у аллелей А и а может быть различным, и в таком случае придется вносить поправку путем деления всех величин на время генерации. Если поколения перекрываются (т. е. особи, составляющие популяцию в данный момент времени, имеют разный возраст) и размножение у разных поколений происходит несинхронно, то положение еще более осложняется, потому что в этом случае нет стандартных интервалов, которые можно было бы использовать для сравнения изменений частоты аллелей А к а. Поэтому Фишер предпочел использовать в качестве меры приспособленности относительные скорости размножения генов в данной популяции, так как в экстремальном случае непрерывного размножения (какие-то особи из тех или иных поколений приносят потомков все время) эту скорость можно вычислить из изменений абсолютной численности (например, N для аллеля Ann для аллеля а) на протяжении какого-либо промежутка времени. Подобный мультипликативный рост описывается уравнениями dN/dt—глМ и dnjdt = ran, которые после интегрирования приобретают вид Nt=N0erA' и nt — noe'a.' (е — основание натуральных логарифмов, г—константа, г — время, А и а — аллели, к которым относится данный параметр). Коэффициент г, который Фишер назвал «мальтузианским параметром» (поскольку Мальтус был одним из первых, создавших модель мультипликативного роста), представляет собой меру скорости распространения каждого гена и поэтому служит показателем приспособленности. Обратите внимание, что если мы примем ( за среднее время генерации, как в

страница 8
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Скачать книгу "Принципы эволюции" (1.08Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Химический каталог

Copyright © 2009
(15.07.2016)