Биологический каталог




Альгология

Автор Н.П.Горбунова

лярная клетка таллома способна регенерировать весь таллом. Пусковым механизмом этого процесса служит удаление примыкающих клеток. Так, в опытах по регенерации для изолирования отдельной клетки соседние с ней клетки отрезались. Такая живая клетка помещалась на питательную среду и при определенных внешних условиях (температура, фотопериод) уже в течение первых суток отчленяла от своей верхушки клетку будущего вертикального побега, а у своего основания—ризоидальную клетку. Дальнейшее удлинение побега осуществляется за счет деления апикальной клетки, когда нить достигает длины 4—5 клеток, возникают первые боковые ветви. На 5-й день изолированная из побега клетка уже образует растение, различимое невооруженным глазом (рис. 12, Б).

Если в нити G. pacifica отмирает интеркалярная клетка, то выше ее расположенная клетка делится с образованием ризоидальной клетки, а клетка, находящаяся ниже погибшей клетки, отчленяет специализированную репарационную клетку. Последняя растет навстречу ризоидальной клетке и сливается с ней, восстанавливая таким образом целостность нити.

Недавно у этого же вида удалось установить локализацию и свойства гормона, названного родоморфином, который индуцирует деление клеток и способствует репарации (S. D. Waaland, А. В. Watson, 1980).

У другого вида — G. tenuis С. Д. Вааланд (S. D. Waaland, 1978) получила соматическое слияние между вегетативными клетками в разных сочетаниях: между клетками одного пола (женская — женская, мужская—мужская) и клетками разного пола (женская — мужская). В эксперименте использовалась следующая методика:

93

длинные клетки междоузлия нителлы (харовой водоросли) разрезались лезвием бритвы на сегменты, из которых стеклянной палочкой удалялось их цитоплазматическое содержимое. В получившиеся цилиндры вставлялись изолированные двуклеточные интеркаляр-ные участки растений G. tenuis. Нити в трубочках располагались так, чтобы основание одной контактировало с верхушкой другой нити. Спустя 4—8 ч верхняя нить продуцировала у основания ризо-идальную клетку, а нижний фрагмент отчленял у своей верхушки специальную добавочную клетку. Еще через 12—16 ч ризоид верхней нити и добавочная клетка нижнего фрагмента сливались с образованием одной гибридной клетки (рис. 12,В). Слившиеся клетки содержали более 100 ядер. Эти гибридные клетки изолировались, и из них в результате регенерации получали новые гибридные растения, которые почти все давали репродуктивные структуры. Характер этих структур определялся характером сливающихся клеток. Гибридные клетки, возникшие при слиянии женских клеток с женскими (вегетативных клеток женских изолятов), мужских с мужскими (клеток мужских изолятов) при регенерации формировали нити, которые продуцировали только половые структуры — женские в первом случае, мужские — в последнем. Если гибридные клетки получали при слиянии женских и мужских клеток (вегетативных клеток из женских и мужских изолятов), то приблизительно 50% регенерирующих нитей давали репродуктивные структуры, характерные для тетраспорангиальной (диплоидной) фазы водоросли. При дальнейшем удлинении нити, образовавшей тетраспоранги-альные ветви, добавляющиеся к ней сверху за счет деления апикальной клетки новые клетки начинают продуцировать половые структуры. Пол последних коррелирует с полом клетки, из которой возник апикальный конец гибридной клетки. Например, если верхняя нить при получении гибридной клетки была женской, а нижний фрагмент — мужским, апикальный конец гибридной клетки будет образован женской клеткой, а базальный — мужской. Когда нить, полученная в результате регенерации такой клетки, начнет давать ветви с половыми органами, они скорее всего будут женскими. Каждая нить продуцирует только один тип половых ветвей (или женские, или мужские).

Клетки, из которых возникали тетраспорангиальные ветви, были вновь изолированы и при репарации давали нити, в одних случаях образующие тетраспорангиальные ветви, в других — половые структуры, в третьих — вообще не формирующие репродуктивных структур. Гибридных нитей, которые продолжали бы непрерывно давать тетраспорангиальные ветви, получено не было.

Тот факт, что соматические гибриды между гаплоидными клетками одного и того же пола никогда не образуют репродуктивные структуры, характерные для диплоидных растений (тетраспорангиальные веточки) и что последние возникают при слиянии гаплоидных соматических клеток разного пола, служит указанием на то, что

94

в гибридных клетках может быть слияние ядер или же они существуют в виде гетерокарионов. Более вероятно последнее предположение, так как гибридные растения после формирования репродуктивных структур, характерных для диплоидной фазы, в конце концов возвращались к образованию половых структур. Даже клетки, которые сами непосредственно продуцировали тетра-спорангиальные веточки, будучи изолированными, впоследствии регенерировали растения, рано или поздно дававшие половые структуры.

Филогенез красных водорослей. Красные водоросли представляют собой естественную единую, несмотря на их многообразие, весьма древнюю группу: остатки их известны из силура и девона. Из всех эукариотических отделов водорослей по набору пигментов, одиночному расположению тилакоидов, отсутствию жгутиковых стадий красные ближе всего к синезеленым, от которых они, однако, резко отличаются строением клетки и наличием полового процесса.

Что касается эволюции в пределах самого отдела красных водорослей, то из двух классов — бангиофициевых и флоридеофицие-вых — первый, несомненно, более примитивный. Здесь у карпогона еще не выработалась типичная форма и он мало отличается от обычных вегетативных клеток. После оплодотворения содержимое карпогона непосредственно делится на карпоспоры. Флоридеофици-евые представляют собой более эволюционировавшую группу, у которой карпогон снабжен органом улавливания спермациев — трихо-гиной. Из порядков класса флоридеофициевых простейшими считаются немалиональные, гелидиальные, у которых нет ауксилярных клеток и гонимобласты с карпоспорангиями образуются непосредственно из брюшной части оплодотворенного карпогона. Следующий шаг прогрессивной эволюции — криптонемиальные: они имеют ауксилярные клетки, способствующие увеличению продукции карпоспор, так как образуется не один цистокарпии на месте оплодотворенного карпогона, а много — по числу этих клеток. При беспорядочно разбросанных по таллому ауксилярных клетках необходимы более или менее длинные ообластемные нити. Еще более прогрессивны те порядки (гигартинальные, родимениальные, церамиальные), у которых имеются прокарпии. Непосредственное соседство карпогона и ауксилярной клетки (клеток) в прокарпии облегчает образование цистокарпиев. Наивысшей ступени эволюции достигли церамиальные, у которых есть прокарпии и ауксилярные клетки дифференцируются только после того, как произошло оплодотворение. Этот порядок наиболее богат видами.

Красные водоросли находят довольно большое применение в хозяйстве из них вываривают студенистое вещество агар-агар, применяемое в кондитерской и ряде других отраслей промышленности, а также в лабораторной микробиолос ической технике для приготовления твердых питательных сред. Некоторые, например порфиру, употребляют в пищу.

95

Глава 7

ОТДЕЛ ЗОЛОТИСТЫЕ ВОДОРОСЛИ — CHRYSOPHYTА

Для водорослей этого отдела характерны хроматофоры, окрашенные в золотистый цвет благодаря тому, что, помимо хлорофил-лов а и с, имеется избыток каротиноидов — Р-каротина и ксантофиллов (фукоксантин, антераксантин, лютеин, зеаксантин, не-оксантин, виалоксантин). Для ультраструктуры хлоропластов характерны сложная оболочка, трехтилакоидные ламеллы, локализованный генофор; опоясывающая ламелла у одних имеется, у других отсутствует. Запасные продукты — хризоламинарин (лей-козин), откладывающийся вне хлоропласта (в цитоплазме) и жир. Глазок, заключенный в пластиду, связан со жгутиковым аппаратом. У одних форм жгутики гетероконтные и гетероморфные, у других — изоконтные, изоморфные; у многих одножгутиковых (в оптическом микроскопе) форм электронная микроскопия выявила второй рудиментарный жгутик. Для переходной зоны жгутика характерно спиральное тело, состоящее из 4—5 витков электронно-плотного материала, расположенных между периферическими дублетами и центральными микротрубочками (рис. 13). Золотистые водоросли, стоящие на разных ступенях морфологической дифференцировки талломов, помимо указанных выше признаков, характеризуются особыми эндогенными или эндоплазматическими окремнелыми цистами или статостюрами, образующимися летом, реже поздней осенью, и служащие для переживания неблагоприятных условий существования. Своеобразие процесса их формирования заключается в том, что оболочка развивается не вокруг протопласта (как у других водорослей), а закладывается внутри него. Протопласт пространственно разрезается оболочкой на интрацистерную внутреннюю и экстрацист ерную наружную части. Экстрацистерная плазма в большей своей части переходит в эндогенно заложив-шуюся спору, после чего спора закупоривается пробочкой или крышечкой, а оставшаяся экстрацистерная плазма разрушается. Во многих случаях края поры вытягиваются в виде трубки или расширяются в виде воронки, В то время как оболочка цисты (ста-тоспоры) обычно сильно окремневшая, окремнение пробочки значительно меньше, а иногда и отсутствует. При прорастании пробочки растворяются и поделившийся

Рис. 13. Пространстаен-ная реконструкция спирального тела и аксонемы в проксимальной части стержня жгута Urogkna

americana: д—периферические дублеты, им — нейтральные ми-кротрубочки, ст—спиральное тело

96

или неподелившийся протопласт споры выходит большей частью в виде монады, снабженной жгутиками, реже в виде безжгутиковой амебы.

Впервые этот процесс эндогенного образования статоспор был описан русским исследователем Л. С. Ценковским в 1870 г. у рода хромулина. Позднее А. Пашер (A. Pascher, 1932) показал, что этот своеобразный способ образования спор свойствен всем золотистым водорослям и встречается не только у монадных и ризоподиальных форм, но и у тех представителей,

страница 24
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

Скачать книгу "Альгология" (4.82Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Rambler's Top100 Химический каталог

Copyright © 2009
(19.10.2017)