Биологический каталог




Биомембраны - Молекулярная структура и функции

Автор Р.Геннис

ормируются; в) в гетерогенной смеси липидов последние реорганизуются таким образом, что молекулы «неправильной» длины оказываются сгруппированными вокруг белка (рис. 5.7, Г).

В принципе подобные упругие деформации могут индуцировать специфические взаимодействия липидов с определенными белками для уменьшения искажений в структуре бислоя путем подгонки формы и размера этих молекул, а не за счет специфических химических взаимодействий. Однако эксперментальные данные на этот счет отсутствуют. Кроме того, простирающиеся на большие расстояния деформации могут влиять на белок-белковые ассоциаты. Экспериментальные подтверждения этому были получены в результате наблюдения с помощью электронной микроскопии за распределением бактериородопсина и родопсина в реконструированных фосфолипидных везикулах при разной толщине мембраны [1131, 1132, 851]. Адаптированный к темноте родопсин действительно агрегировал в результате изменения наклона ацильных цепей липидов при внедрении фермента в бислой, слишком толстый для идеальной упаковки вокруг белка [1132].

5.5.3. ДИНАМИЧЕСКИЕ СВОЙСТВА ОСТОВА МЕМБРАННЫХ БЕЛКОВ И ИХ БОКОВЫХ ЦЕПЕЙ

Проводя ЯМР-исследования твердых образцов, можно получить детальную информацию о динамических свойствах отдельных аминокислотных остатков мембранных белков. Однако при этом необходимы большие количества (100—200 мг) препарата равномерно меченного белка. Наиболее информативным этот метод является в случае небольших белков, когда можно проводить спектроскопические измерения. Возможности этих методов иллюстрируют работы по исследованию белков оболочки нитевидных бактериофагов (например, fd, М13) [842, 621]. При вирусной инфекции эти белки встраиваются в плазматическую мембрану Е. coli (см. рис. 10.9) с помощью единственной трансмембранной спирали, а во время сборки фага липиды и белки клетки-хозяина исключаются из его оболочки. Малый размер белков оболочки, возможность получения их в больших количествах и легкость выделения создают значительные преимущества при их изучении методом ЯМР, а также другими методами.

86

240 Глава 5

Для исследования динамических свойств аминокислотных остатков белка оболочки фага fd (его длина — 50 аминокислот) в реконструированных фосфолипидных бислоях использовались методы 2Н- и 15N-flMP. Результаты показали, что полипептидный остов на участке от 5-го до 43-го остатков включительно относительно жесткий, при этом данный сегмент превосходит по длине участок, находящийся внутри липидного бислоя. Несколько остатков на концах полипептида свободны и могут совершать движения с большой амплитудой. Большинство боковых цепей в состоянии совершать такие движения (например, кольца остатков фенилаланина и тирозина могут поворачиваться на 180°), даже когда соответствующие остатки находятся внутри бислоя.

Работы, в которых использовались упомянутые методы, слишком немногочисленны для того, чтобы можно было составить полное представление о характере влияния липидно-белковых взаимодействий на внутреннюю динамику мембранных белков.

5.5.4. СВЯЗЫВАНИЕ ПЕРИФЕРИЧЕСКИХ МЕМБРАННЫХ БЕЛКОВ С ЛИПИДНЫМ БИСЛОЕМ [328, 116, 330]

При изучении липидно-белковых взаимодействий основное внимание уделялось трансмембранным белкам, однако в последнее время проявляется все больший интерес к связыванию с бислоем периферических мембранных белков. Многие такие белки связываются с мембраной главным образом через взаимодействие с интегральными белками. Но существует большая группа разнообразных белков, которые связываются непосредственно с поверхностью липидного бислоя. Некоторые из этих белков, например основный белок миелиновой оболочки [1351, 1413], спектрин [912] и матриксный белок вируса везикулярного стоматита [1581], играют в основном структурную роль. Множество растворимых белков связываются с поверхностью мембраны на непродолжительное время или при специфических условиях. В некоторых случаях связывание белка является необходимым условием проявления его ферментативной активности; такими белками являются, например, протеинкиназа С [586], факторы свертывания крови [818, 945, 773, 1180], пируватоксидаза [536] (гл. 6). Еще одним примером белков, связывающихся с поверхностью бислоя, служат амфифильные пептидные гормоны (см. разд. 3.7.1) и, возможно, сигнальные последовательности [394, 147], которые ответственны за перемещение секретируемых или мембранных белков в нужное место (разд. 10.3.2).

По-видимому, существует два основных, не исключающих друг друга типа связывания белков с липидами: 1) связывание осуществляется при участии амфифильной структурной единицы, обычно а-спирали. Эта вторичная структура может индуцироваться и стаби-

Динамическое поведение мембранных систем и липидно-белковые взаимодействия 241

лизироваться при взаимодействии с липидами; 2) связывание имеет в основном электростатическую природу и осуществляется при участии положительно заряженного участка белковой молекулы и кислых фосфолипидов. При этом значительную роль могут играть гидрофобные взаимодействия, зависящие от того, насколько глубоко белок проникает в бислой. Во многих случаях для связывания с кислыми фосфолипидами необходим Са2 + , но истинная роль этого двухвалентного катиона (например, образование поперечного мостика с кислыми остатками белка) точно не определена (разд. 6.7.3).

Взаимодействие периферических мембранных белков с фосфолипидами изучали многими методами. Так, за связыванием белков с везикулами можно следить с помощью светорассеяния [818] или путем измерения флуоресценции белков [955], при этом можно определить константы диссоциации [955]. Возмущения в бислое, вызванные связыванием с ним белков, можно выявить по изменению проницаемости везикул [201, 198] или параметров температурного фазового перехода липидов [1180, 188], хотя анализировать эти результаты на молекулярном уровне довольно трудно. Весьма полезным оказалось также изучение монослоев [945, 773], при этом степень проникновения белка в монослой можно оценить по изменению площади поверхности монослоя после внедрения белка.

Для получения детальной информации на молекулярном уровне одним из наиболее ценных методов оказался ЯМР. С помощью ЯМР были детально проанализированы последствия взаимодействия липидного бислоя с основным белком миелиновой оболочки и цитохромом с [1351, 329]. Оба этих белка взаимодействуют с кислыми липидами главным образом электростатически, хотя физиологическая роль такого взаимодействия цитохрома с с липидами неясна. В отличие от трансмембранных белков два указанных периферических белка значительно различаются по взаимодействию с фосфолипидами. Так, при изучении везикул, содержащих димиристоил-фосфатидилглицерол и фосфатидилхолин, обнаружилось, что основный белок миелиновой оболочки специфически взаимодействует с первым из этих липидов [1351]. Исследования методом инфракрасной спектроскопии с фурье-преобразованием показывают, что при связывании с фосфатидилглицеролом белок приобретает высо-коупорядоченную вторичную структуру; в основном он образует /3-слой, который в отсутствие этого липида не наблюдается [1413]. По данным 2Н-ЯМР белково-липидные взаимодействия приводят к существенному изменению упаковки полярных головок кислых фосфолипидов [1351]. Сходные работы, выполненные на цитохроме с с использованием метода 2Н-ЯМР, показали, что при связывании с этим белком происходят лишь небольшие изменения в упаковке головок фосфатидилсерина; в этих опытах использовались везику-

242 Глава 5

лы, содержащие также фосфатидилхолин. В обеих системах не наблюдалось никакого латерального разделения фаз и происходил быстрый обмен (> 105 с" ') между свободными и связанными с белками липидами. Однако с другими кислыми фосфолипидами цитохром с взаимодействует по-разиому [329]. Например, в везикулах, содержащих кардиолипин и фосфатидилхолин, он вызывает латеральное разделение фаз, а в везикулах, содержащих кардиолипин и фосфатидилэтаноламин, стабилизирует иебислойные структуры.

Итак, по-видимому, типы взаимодействия между периферическими мембранными белкам и фосфолипидным бислоем весьма разнообразны.

5.6. Резюме

Чтобы до конца установить функции биологических мембран, необходимо изучить динамические свойства их компонентов. Для измерения скорости вращения липидов и белков внутри мембраны и скорости латеральной диффузии этих компонентов в плоскости мембраны были разработаны специальные спектроскопические методы. Они основаны на использовании спиновых или флуоресцентных зондов, которые встраиваются в мембрану или связываются с конкретными белками. Как правило, мембранные липиды могут свободно диффундировать в плоскости мембраны со скоростью, сравнимой со скоростью их диффузии в модельных мембранах. Напротив, латеральное движение интегральных белков в биологических мембранах часто ограничено. Это может быть связано с их ассоциацией с другими мембранными белками или с элементами цитоскелета либо внеклеточного матрикса. Многие белки способны свободно вращаться в плоскости мембраны, но это вращение также может быть затруднено из-за образования белковых агрегатов.

В любой момент времени с белком в биологической мембране соседствует значительная доля липидов. Слой липидов, непосредственно прилегающих к белку, называется пограничным. Эти липиды очень быстро (~107 с"1) обмениваются с основной массой липидов бислоя, и обычно вероятность нахождения тех или иных липидов по соседству с белком или в основной липидной фракции почти одинакова. Правда, для некоторых белков характерна определенная избирательность в связывании с липидами, но для всех известных случаев различие в связывании, измеряемое сродством липидов к пограничному слою, не превышает пяти. И даже такая слабая избирательность может приводить к тому, что липидный состав пограничного слоя будет отличаться от состава основной липидной фазы.

Глава 6

МЕМБРАННАЯ ЭНЗИМОЛОГИЯ

6.1. Введение

В предыдущей главе мы рассматривали мембрану как динамическую (в физическом смысле) структуру. Здесь же основной акцент будет сделан на биологической активности мембраны. Биомембрана — это не просто некая пассивная структура, ограничивающая водные компартменты. Уже краткое знакомство с типами ферментов, связанных с мембранами, показывает, насколько разнообразны ассоциированные с мембранами каталитические активности.

1. Трансмембранные ферменты, катализирующие сопряженные реакции на противоположных сторонах мембраны. Типичные ферменты этого класса имеют несколько активных центров. Характерными примерами могут служить окислительно-восстановительные ферменты, например фотосинтетические реакционные центры растений и бактерий или цитохром с-оксидаза митохондрий. Расположенные на противоположных сторонах мембраны активные центры этих ферментов сопряжены друг с другом с помощью потока электронов, генерирующего трансмембранный электрический потенциал. К этому классу ферментов могут быть отнесены также многие рецепторы. Связывание лиганда (например, гормона) с доменом, локализованным с наружной стороны клеточной мембраны, приводит к изменениям в цитоплазматическом домене фермента, которые в свою очередь иницируют клеточный ответ. В этом случае через мембрану переносится информация, а не заряды или какие-либо растворенные молекулы. Показано, что некоторые рецепторы являются тирозиновыми протеинкиназами (см. разд. 9.7) и, следовательно, представляют собой мембранные ферменты, обладающие каталитической активностью. Большинство же мембранных рецепторов сами по себе не катализируют никаких химических реакций и не являются в этом смысле ферментами. Рецепторы подробно рассматриваются в гл. 9.

2. Трансмембранные ферменты, участвующие в транспорте веществ. Многие мембранные белки участвуют в транспорте молекул через бислой. Активный транспорт может быть сопряжен с гидро-

244 Глава 6

лизом АТР, как в случае Са* * -АТРазы саркоплазматического ретикулума (разд. 6.5; 8.4.1). Движущей силой активного транспорта могут быть также ионные градиенты. Например, транспорт лактозы через плазматическую мембрану Е. coli с помощью лактозопер-меазы сопряжен с поглощением протонов и зависит от трансмембранного градиента электрохимического потенциала (разд. 8.3.2). Белки, участвующие в транспорте веществ, более детально обсуждаются в гл. 8.

3. Белки, являющиеся компонентами электронтранспортных цепей. Наиболее типичные ферменты этого класса — компоненты дыхательной цепи митохондрий, заканчивающейся, цитохром с-оксидазой; ферменты системы электронного транспорта микросом, включающие цитохром Р450 и цитохром bs; элементы фотосинтетической электронтранспортной цепи в тилакоидах. Локализация компонентов электронтранспортных цепей в мембране приводит к увеличению их локальной концентрации, что позволяет значительно ускорить перенос электронов между молекулами. Основной вопрос состоит в том, являются ли компоненты соответствующих электронтранспортных цепей свободно диффундирующими в плоскости мембраны белками или они находятся в мембране в виде более или менее долгоживущих суперкомплексов (разд. 6.6).

4. Ферменты, способные использовать мембраносвязанные субстраты. В этот класс могут входить ферменты, участвующие в метаболизме компонентов мембраны: фосфолипидов, гликолипидов, полиизопреноидных соединений и стероидов, а также ферменты, участвующие в процессинге мембранных и секреторных белков. В большинстве случаев эти ферменты являются интегральными мембранными белками, но иногда (примером могут служить фосфолипазы) представляют собой растворимые белки, лишь временно связанные с мембраной (разд. 6.7 и гл. 10). Примерами белков этого типа являются лидерная пептидаза из Е. coli (разд. 10.3.3) и фосфолипаза С, связанные с мембраной посредством гликозилфосфа-тидилинозитольиого якоря [623].

5. Ферменты, использующие водорастворимые субстраты. Многие мембраносвязанные ферменты используют растворимые субстраты. В некоторых случаях фермент локализуется в такой области мембраны, где велика концентрация субстрата. Например, ацетилхолинэстераза, катализирующая гидролиз ацетилхолина, по-видимому, фиксируется в постсинаптической мембране с помощью ковалентной сшивки с фосфатидилинозитольным гликолипидом ([1104]; разд. 3.8). Целый ряд ферментов, участвующих в гидролизе крахмала и белков, прикрепляется к мембранам микроворсинок кишечника [1080] с помощью гидрофобных доменов, расположенных в N-концевой части полипептидов. Вероятно, связь этих пищеварительных ферментов с мембраной позволяет создать локально высо-

Мембранная знзимология 245

кую концентрацию растворимых молекул, что способствует их эффективному поглощению клеткой. В качестве примера можно привести два фермента из этой группы: сахараза-изомальтаза [666] и мальтаза-глюкоамилаза [1080].

6. Ферменты, образующие мембраносвязанный комплекс для облегчения канализации субстрата. Мембраны могут служить своеобразным организующим каркасом, с которым связываются периферические ферменты с образованием мультиферментного комплекса. Имеются косвенные данные о том, что участвующие в реакциях цикла Кребса ферменты матрикса митохондрий связываются с мембраной таким образом, что продукт

страница 33
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

Скачать книгу "Биомембраны - Молекулярная структура и функции" (4.40Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Rambler's Top100 Химический каталог

Copyright © 2009
(24.06.2017)