Биологический каталог




Биомембраны - Молекулярная структура и функции

Автор Р.Геннис

тельной диффузии некоторых мембранных липидов и белков приведены в табл. 5.2. Коэффициенты диффузии флуоресцентных меток и аналогов липидов в фосфолипидных мультибислоях или в крупных однослойных везикулах (табл. 5.2) равен 10"8 см2/с. При изучении поведения этих же зондов в разнообразных природных мембранах коэффициент диффузии обычно оказывается примерно в 10 раз меньше. Этот феномен, как правило, объясняют присутствием в биомембранах белков, препятствующих латеральной диффузии [1503, 1285, 1162, 522, 378]. Скорость латеральной диффузии фосфолипидов с разными полярными головками различается слабо, однако в реконструированных везикулах ганглиозиды диффундируют медленнее [521]. При переходе мембранного бислоя в состояние геля скорость латеральной диффузии уменьшается более чем на два порядка (D < 10' 10 см2/с). В жидком бислое модельных мембран и в биомембранах липиды обычно диффундируют свободно, хотя имеются редкие исключения [1599].

Совсем иначе обстоит дело с латеральной диффузией мембранных белков. Исследование поведения нескольких белков в реконструированных везикулах, пока не позволяющее сделать оконча* тельные выводы, тем не менее указывает на то, что коэффициенты поступательной диффузии белков разных размеров очень близки и что белки диффундируют лишь немного медленее, чем липиды [1503, 691]. Исследованные белки сильно различались по числу

Динамическое поведение мембранных систем и липидно-белковые взаимодействия 227

трансмембранных сегментов и по степени ассоциированности, и тем не менее диффундировали с одинаковой скоростью. Модель Саффмана—Дельбрюка предсказывает очень слабую зависимость скорости диффузии от размеров молекул [1273]. В реконструированных везикулах с высоким содержанием белка могут происходить агрегация последнего и латеральное разделение фаз, приводящие к иммобилизации части белка [725].

В биомембранах коэффициенты латеральной диффузии белков обычно в 100—1000 раз меньше, чем в модельных системах с низкой концентрацией белка (т. е. существует эффект разведения). Например, родопсин, по-видимому, свободно диффундирует в биомембране— D « 4-10"9 см2/с. Поскольку мембраны, содержащие родопсин, характеризуются высоким отношением белок/липид (табл. 1.4), ясно, что обычно наблюдаемая медленная диффузия других мембранных белков не может быть обусловлена исключительно присутствием белков в бислое. Есть и еще один интересный факт: восстановление флуоресценции в экспериментах FRAP происходит не полностью и нередко составляет менее 75%. Это означает, что часть изучаемой популяции белков неподвижна (D < 10" 12 см2/с).

Вопрос о том, что ограничивает латеральную диффузию мембранных белков, имеет ключевое значение [366, 691]. Маловероятно, что это обусловлено агрегацией мембранных белков, поскольку для объяснения большинства данных потребовалось бы предположить, что образуются слишком крупные агрегаты. Одно из возможных объяснений состоит в том, что мембранные белки,малоподвижны, поскольку связаны с внеклеточным матриксом или с ци-тоскелетом. Обнаружилось, что, оказывая воздействие на внеклеточный матрикс, можно влиять на латеральную диффузию мембранных белков [1052], однако имеются и другие данные, согласно которым эта связь не столь уж важна [366, 690, 1073].

О взаимодействиях между мембранными белками и элементами цитоскелета, ответственных за некоторые из наблюдаемых ограничений латеральной диффузии белков, свидетельствуют разные данные [1503, 367, 1331, 1436]. Белок полосы 3 в мембранах эритроцитов в норме в основном неподвижен, но в клетках с недостатком спектрина его латеральная подвижность возрастает по меньшей мере в 40 раз [1331] (табл. 5.2). При нарушениях цитоскелета в тенях эритроцитов латеральная диффузия белка полосы 3 также возрастает [1472]. Проводились опыты по изучению диффузии ацетилхоли-новых рецепторов во вздутиях в мембранах, где связь с актином и элементами цитоскелета нарушена. Подвижность белка в таких системах была гораздо выше, чем в клетках с интактным цитоске-летом [1436] (табл. 5.2). Тем не менее гипотезу о том, что низкая подвижность мембранных белков обусловлена их связью с цитоске-летом, нельзя считать бесспорной.

228 Глава 5

Известен по крайней мере один случай, когда взаимодействия с цитоскелетом не сказываются на латеральной диффузии. G-белок вируса везикулярного стоматита находится в плазматической мембране инфицированных животных клеток и имеет единственный трансмембранный сегмент. Были получены мутантные формы этого белка, у которых цитоплазматический домен отсутствовал [1313]. Ни для одного из мутантов не наблюдалась быстрая латеральная диффузия, которая характерна для мембранных белков, встроенных в искусственные бислой. Эти результаты свидетельствуют о том, что прямые взаимодействия между данным белком и цитоплазматическими белками не приводят к уменьшению латеральной подвижности.

Наконец, следует отметить, что с помощью метода FRAP, используемого в большинстве этих экспериментов, была зарегистрирована диффузия на расстояние от нескольких сотен А до 1 мкм. Белок может свободно диффундировать внутри небольшого домена, но встречать препятствия на своем пути в присутствии других интегральных или периферических белков, и при использовании метода FRAP будет считаться неподвижным. Кроме того, если бы взаимодействие между мембранными белками и белками цитоскелета было относительно слабым и частота их ассоциации и диссоциации была достаточно высока, белок мог бы перепрыгивать с одного сайта связывания на другой. В результате суммарная скорость латеральной диффузии уменьшилась бы, поскольку белок большую часть времени находился бы в связанном с цитоскелетом состоянии, но скорость движения белка между сайтами связывания была бы высока [692]. Образование кластеров мембранных белков за счет притяжения между ними также приводит к уменьшению латеральной диффузии [1164].

5.5. Липидно-белковые взаимодействия [328, 1360, 925, 828, 330]

Большинство методов, применяемых для изучения упорядоченности и динамических свойств мембран, используется и для исследования липидно-белковых взаимодействий. Работы по изучению этих взаимодействий были в основном направлены на выяснение влияния мембранных белков на физическое состояние липидов. Рассмотрим типичную мембрану с весовым соотношением липид/белок = 1:1 (табл. 1.4). При средней мол. массе белка 50 кДа молярное соотношение липид/белок составляет -60:1 при условии, что присутствуют только фосфолипиды. Для сравнения укажем, что соответствующие соотношения для мембраны наружного сегмента палочки сетчатки и саркоплазматического ретикулума состав-

Динамическое поведение мембраииых систем и липидно-белковые взаимодействия 229

ляют по оценкам 75:1 и 110:1. Если белок представляет собой цилиндр, выступающий за пределы бислоя с обеих сторон примерно на 10 А, то его радиус должен составлять около 18 А. Молекула фосфолипида в жидкой мембране занимает площадь ~60А2, что соответствует радиусу головки -4,4 А, и для того, чтобы полностью окружить белок, иа каждой стороне бислоя должно находиться около 16 таких молекул липидов. Следовательно, согласно этой модели, в любой момент времени около 50% липидов должно соседствовать с белковыми молекулами. Однако белком занято 35% площади поверхности мембраны, и даже учитывая сугубо приближенный характер этой модели, можно понять, что физические методы регистрации состояния липидов должны учитывать влияние белков на свойства биомембран.

Чтобы выяснить структуру и функции мембран, необходимо прежде всего ответить на следующие вопросы: 1) насколько прочно связаны внутримембранные белки с липидами и какова природа липидного слоя, прилегающего к белку? 2) как далеко простирается влияние мембранных белков на укладку и динамические свойства мембранных липидов? 3) как влияют липиды на структуру и функции внутримембранных белков? 4) как периферические мембранные белки, связанные с поверхностью бислоя, взаимодействуют с липидами и влияют на их поведение?

5.5.1. СВЯЗЫВАНИЕ ЛИПИДОВ С ВНУТРИМЕМБРАННЫМИ БЕЛКАМИ В БИСЛОЕ

Этой теме были посвящены многочисленные исследования [328, 330, 198, 925], в которых использовались разнообразные подходы. По существу во всех этих работах ставилась задача выяснить, есть ли у белков участки, специфически взаимодействующие с определенными липидами, и можно ли считать белково-липидные комплексы долгоживущими, т. е. обладают ли они временем жизни, сравнимым с временем оборота типичного фермента (~10~3 с). Такие исследования проводились с помощью Н-ЯМР, ЭПР и флуоресцентных методов. Чтобы разобраться в полученных результатах, полезно рассмотреть термодинамику простой реакции обмена, где липид одного типа (Li) вытесняется с места связывания на белке (Р) другим липидом (L2):

ki

PL, + L2 PL2 + L,.

к-i

Константа равновесия этой реакции равна

_ [PL2][L,]

[P.][L2] '

230 Глава 5

Она является относительной константой связывания липидов Li и L2 с данным(и) участком(ами) белковой молекулы, причем

AG0 = -RT In К.

Если липиды двух типов присутствуют в мембране в одинаковой концентрации ([Li] = [L2]) и сродство их к белку одинаково, то К = 1. Рассмотрим гипотетический случай, когда L2 является минорным липидным компонентом и составляет только 5% от общего количества липидов. Тогда

[L,]/[L2] = 19/1.

Предположим, что L2 предпочтительно связывается с неким участком белковой молекулы, так что в равновесии 90% участков занято L2. Тогда

[PL2]/[PL,1 = 9/1.

Следовательно, К = 171, что соответствует величине AG0 = = -3,1 ккал/моль. Столь небольшого различия в свободной энергии связывания оказывается достаточно для существенного смещения распределения липидов, связанных с белком, от равновесного состояния. Это обусловлено тем, что соотношение эффективных концентраций конкурирующих липидов в мембране относительно мало: не превышает 100, а в большинстве случаев гораздо меньше. Другими словами, даже минорные липиды присутствуют в мембране в концентрации, составляющей не менее 1% от концентрации основных липидов, с которыми они конкурируют за места связывания на белках.

Для оценки относительного сродства липидов к специфическим белкам используют два подхода [828]. Они основаны на применении липидных аналогов, встроенных в фосфолипидные везикулы, которые содержат интересующий исследователя белок.

1. Спин-меченные фосфолипиды, соседствующие с мембранными белками, обладают ограниченной подвижностью. Это проявляется в уширении спектра ЭПР (см. рис. 5.3). У тех молекул ЭПР-зонда, которые соседствуют с белком, возможность движения с характерной частотой ^ 108 с" 1 существенно ограничена. Спектр ЭПР в этом случае может быть представлен в виде суммы двух компонент: компоненты с узкими спектральными линиями, соответствующей основной липидной фазе, и компоненты, отвечающей липидам с ограниченной подвижностью. Для того чтобы эта последняя была в спектре преобладающей, отношение белок/липид должно быть достаточно высоким. Осложняет картину то, что липиды могут попадать в «ловушки» из белковых агрегатов. Такие липиды тоже обладают ограниченной подвижностью, и им соответствует третья компонента в спектре ЭПР. Для выявления попавших

Динамическое поведение мембранных систем и липидно-белковые взаимодействия 231

в ловушку липидов при высоких концентрациях белка можно использовать липидные спиновые зонды, ковалентно связанные с поверхностью белка [328, 330, 297, 550].

2. Спин-меченные и бромированные липидные производные способны тушить флуоресценцию триптофана, входящего в состав мембранных белков. Эффективность тушения зависит от расстояния между липидным производным и остатком триптофана, и присутствие таких липидов в слое, непосредственно прилегающем к белку, приведет к тушению флуоресценции белка. Относительную способность этих липидов связываться с белком в присутствии различных конкурирующих липидов можно исследовать путем измерения интенсивности флуоресценции белка.

Анализ экспериментальных данных [328, 330, 766, 151, 925, 828]

Применимость спин-меченных липидов для определения относительного сродства различных липидов к мембранным белкам определяли с помощью относительно простых моделей с множественным равновесием [766, 151, 328, 828]. Соответствующие методы основаны на определении доли связанной спиновой метки в зависимости от соотношения между общим количеством липидов и белком. В принципе эти методы можно использовать для количественной оценки связывания различных типов меток (например, сильное и слабое связывание), но на практике такие измерения трудно осуществить. Как правило, считается, что все места связывания одинаковы. В одном из вариантов исследуют связывание небольшого количества спин-меченного липида данного типа в присутствии большого количества липида другого типа. При этом снимаются спектры образцов с разным соотношением между липидами и белками. В предположении, что имеется N одинаковых мест связывания, выполняется следующее соотношение [44]:

[Метка1сво6 _ [Общее количество липидов]/[Белок] 1 [Метка]св„ Ш ~К ' ( '

Построив график этой функции, получают прямую, из которой находят N и К. Если метка является спин-меченным производным липида, который служит немеченым растворителем, то величина К должна быть равна 1, что и было подтверждено экспериментально.

Аналогичные допущения можно использовать и при анализе данных по тушению флуоресценции с целью нахождения К [363, 872, 925]. Трудности здесь могут возникнуть из-за гетерогенности мест связывания как по сродству к липидам, так и по способности связанных липидов тушить флуоресценцию триптофана. Однако флуоресцентный метод имеет то преимущество, что при высоких значениях отношения липид/белок агрегация белка создает мень-

232 Глава 5

шие проблемы, чем при использовании метода ЭПР.

Необходимо помнить, что ни один из методов, используемых для нахождения относительных констант связывания липидов с мембранными белками, не пригоден для определения небольших количеств мест связывания с высоким сродством, поэтому тот факт, что такие места этими методами не обнаружены, вовсе не означает, что они отсутствуют.

Дополнение 5.3. Некоторые белки проявляют

избирательность при связывании с фосфолипидами, несущими различные полярные

ГОЛОВКИ

Избирательность связывания с липидами была изучена только для небольшого числа белков, в частности для цитохром с-оксидазы митохондрий, Na + /K+-ATPa3bi, Са2 + -АТРазы из саркоплазма-тического ретикулума и родопсина позвоночных у животных. Как правило, избирательность связывания весьма слаба, при этом максимальное значение К близко к 5. Тем не менее этого достаточно для того, чтобы имелось значительное различие в связывании липидов с разными белками, зависящее от концентрации липидов разных типов, присутствующих в мембране.

1. Одна молекула родопсина (см. рис. 4.1) связывается примерно с 24 липидными молекулами (т. е. N = 24), отдавая лишь очень небольшое предпочтение кардиолипину перед фосфатидилхолином [926].

2. № + /К+-АТРаза из Squalus acanthus [152, 295] (разд. 6.5 и 8.4.1) связывается примерно с 60 фосфолипидными молекулами, отд

страница 31
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

Скачать книгу "Биомембраны - Молекулярная структура и функции" (4.40Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Химический каталог

Copyright © 2009
(29.06.2022)