Биологический каталог




Самая главная молекула

Автор М.Д.Франк-Каменецкий

пятен (см. рис. 1). Опыты были впервые проведены в 1912 г. Вскоре стало ясно, что по распределению пятен на рентгенограмме и по их яркости можно судить о взаимном расположении атомов или молекул, образующих кристалл, и в случае молекул — даже об их внутреннем строении. Так возник метод рентгеноструктурного анализа.

Рис 1. Так выглядит рентгенограмма, полученная от кристалла белка.

Наибольший вклад в его развитие внесли английские ученые Генри (отец) ч Лоуренс (сын) Брэгг. Рентгеноструктурный анализ позволил точно определить структуру всех минералов, а также бесчисленного множества молекул.

Мало-помалу «рентгеноструктурщики» переходили к все более сложным объектам исследования и, наконец, в 30-е годы обратили свои взоры к биологическим молекулам. Однако после первых же попыток стало ясно, что задача

Рис, 2. Аминокислотная последовательность одного из белков (лизоцима).

им пока еще не по плечу. Прежде всего из биологических молекул очень трудно получить кристаллы. Но даже если это удавалось, десятки тысяч атомов, входящих в каждую молекулу, создавали на рентгенограмме такой причудливый узор, что восстановить по нему координаты всей этой массы атомов было просто невозможно. Потребовались многие годы, пока научились решать столь сложные задачи.

Этим занимались в Кавендишской лаборатории в довоенные и послевоенные годы. Усилия Кавендишской лаборатории, руководимой Лоуренсом Брэггом, были сосредоточены на определении пространственного строения белков. Это и понятно. В те годы все были убеждены, что главная молекула живой природы — молекула белка. В самом деле, ферменты, то есть молекулы, проводящие в клетке всевозможные химические превращения, — это всегда белки. Белок представляет собой главный строительный материал клетки. Не удивительно, что всеобщим было убеждение, что и гены устроены из белка. Казалось несомненным, что путь к разгадке всех тайн жизни лежит через изучение строения белков.

Белок представляет собой полимерную молекулу, мономерными звеньями, «кирпичиками» которой служат аминокислотные остатки (рис. 2), Аминокислотные остатки располагаются всегда строго линейно, плечом к плечу, подобно солдатам, стоящим по стойке «смирно». Но так устроен и биологически активный белок, и белок, нагретый, скажем, до 60 °С, когда он уже полностью теряет свою биологическую активность. Значит, одного химического строения белка, т. е. последовательности аминокислотных остатков, недостаточно для того, чтобы белок был биологически активен. Необходима еще совершенно определенная укладка в пространстве групп, закодированных на рис. 2 в виде сокращенных названий аминокислот, которые на самом деле вовсе не кружочки и не шарики, а имеют каждая свою весьма причудливую форму. Вот за то, чтобы определять пространственную структуру всей молекулы белка по рентгенограммам типа приведенной на рис. 1, и велась затяжная борьба в стенах Кавендишской лаборатории. Лишь в середине 50-х годов Джону Кендрю и Максу Перуну удалось добиться успеха — они научились определять трехмерную структуру белков. Это случилось уже после того, как была решена проблема устройства геиа — к чему, как оказалось, белки отношения вовсе не имеют.

Уотсон и Крик

Из тех, кто откликнулся на призыв Шредин-гера, двоим посчастливилось первыми подняться на вершину. Это были совсем еще юный воспитанник фаговой группы Джим Уотсон и не столь юный, но в то время мало кому известный сотрудник Кавендишской лаборатории Фрэнсис Крик.

Будучи одержим идеей узнать, как устроен ген, и считая, что фаговой группе эта задача не по плечу, Уотсон добился в 1951 г., чтобы его отправили поработать в Европу. Вскоре он осел в Кавендишской лаборатории, так как встретил там Крика, который был настроен так же по-боевому» как и он сам. Уотсон к тому времени уже был уверен, что ключ к разгадке тайны гена лежит вовсе не в определении структуры белка, а в выяснении структуры ДНК.

Вообще-то молекула дезоксирибонуклеиновой кислоты, а это неуклюжее название и кроется за сокращением ДНК» не была чем-то новым. Она была открыта в клеточных ядрах швейцарским врачом И. Ф. Мишером еще в 1868 г. Затем было показано, что ДНК сосредоточена в хромосомах, и это, казалось бы, говорило о ее возможной роли в качестве генетического материала. Однако в 20-х и 30-х годах прочно утвердилось мнение, что ДНК — это регулярный полимер, состоящий из строго повторяющихся четверок мономерных звеньев (аденинового, гуанинового, ти-минового и цитозинового) и поэтому эта молекула не может нести генетическую информацию.

Считали, что ДНК играет в хромосомах какую-то структурную роль, а гены состоят из белка, который входит в состав хромосом. Что же заставило усомниться в справедливости этих представлений? Главную роль здесь сыграла работа,законченная к 1944г. тремя американскими бактериологами из Рокфеллеровского института во главе с шестидесятилетним О. Эвери. Эвери многие годы изучал явление трансформации, открытое в опытах с пневмококками — возбудителями пневмонии (воспаления легких). Эти удивительные опыты состояли в следующем. Брали два вида пневмококков. Одни были способны вызывать болезнь, а другие — нет. Затем болезнетворные клетки убивали путем нагревания и к ним добавляли живые «безобидные» клетки. И вот оказалось, что некоторые из живых клеток после контакта с убитыми каким-то образом «научились» вызывать болезнь. Было ясно, что в этих опытах что-то переходит из убитых бактерий к живым. Но что? На этот вопрос и удалось дать ответ Эвери и его соавторам. И хотя их работа была напечатана в медицинском журнале, ею заинтересовались скорее генетики, химики, физики, чем медики. В этой скрупулезно выполненной работе было показано, что при трансформации способность вызывать болезнь переносится от убитой бактерии к живой только с одним веществом — с ДНК- Ни белки, ни какие-либо другие составляющие клетки в передаче признака при трансформации никакой роли не играют. Собственно, эта работа Эвери теперь считается первой работой, в которой было доказано, что вещество наследственности, или гены, есть именно молекула ДНК.

Так что же, выходит, Эвери со своими помощниками, а вовсе не Уотсон и Крик первыми побывали на вершине?

Бесспорно, Эвери сделал очень важный шаг в нужном направлении, но до вершины он не добрался. Эйнштейн как-то сказал изумительные по своей глубине слова: «Лишь теория решает, что мы ухитряемся наблюдать». У Эвери не было в запасе ничего такого, что можно было бы назвать теорией, и он предпочел ограничиться сухим изложением фактов. Тем не менее, несогласие его данных с концепцией белковой природы гена было очевидным.

Генетики оказались перед выбором — либо не поверить данным Эвери, либо признать, что веществом наследственности оказался не белок, как принято было считать, а ДНК. Опровергнуть Эвери было трудно — в его работе просто-напросто не к чему было придраться. Но и от устоявшихся представлений о белковой природе гена отказаться ни за что не хотели. Опытам Эвери было дано следующее объяснение: ДНК, конечно, никаких генов не содержит и содержать не может. Но она может вызывать мутации, т. е. изменять гены, которые, как им и положено, состоят из белка. Правда, ДНК оказалась весьма необычным мутагеном, вызывающим от опыта к опыту одни и те же мутации, в отличие от обычных мутагенов, которые вызывают мутации случайным образом, ненаправленно. Это не могло не заинтересовать генетиков, уже давно искавших способы направленного изменения наследственности. Так удалось спасти, казалось бы, уже испускавшую дух белковую теорию гена, но при этом генетики и все те, кто занимался проблемой химической (или физической) природы наследственности, вынуждены были, наконец, признать, что на ДНК следует обратить серьезное внимание.

Итак, работа Эвери заставила усомниться в том, что ДНК — это всего лишь полимерная молекула, выполняющая в хромосомах структурную роль. Стало ясно, что в ДНК есть что-то еще... Но — не более того. Той теорией, которая решила, что же на самом деле ухитрился наблюдать Эвери, была модель строения молекулы ДНК, придуманная Уотсоном и Криком в 1953 г.

Уотсон и Крик не имели собственных экспериментальных данных. Вообще в то время в Кавендишской лаборатории, где работал Крик и стажировался Уотсон, никто не занимался ДНК. Ею занимались Морис Уилкинс и Розалинда Франклин в Королевском колледже в Лондоне.

Исследовать ДНК с помощью рентгеноструктурного анализа оказалось даже сложнее, чем белок. Молекулы ДНК как следует не кристаллизовались и давали весьма бедные рентгенограммы, вроде той, что приведена на рис. 3. Нечего было даже пытаться решить с помощью таких рентгенограмм обратную задачу рентгеноструктурного анализа, то есть научиться восстанавливать пространственную структуру молекулы, как это пытались сделать для белков Перуц и Кендрю.

Однако кое-какие очень важные параметры молекулы все же удалось извлечь. Эти параметры, полученные М. Уилкинсом и Р. Франклин, а также детальные данные о химическом строении ДНК и были положены Уотсоном и Криком в основу их работы. То, как они действовали, больше всего походило на игру. Они знали, как устроены отдельные элементы — мономерные звенья ДНК. Из этих элементов, как из деталей детского конструктора, надо было собрать структуру, отвечающую рентгеновским данным. Результатом этой «игры» стало одно из величайших научных открытий в истории человечества.

Собственно, тому, что в результате получилось, посвящена вся эта книжка. Мы постепенно расскажем обо всех главных особенностях строения молекулы ДНК и о том, к каким головокружительным последствиям в понимании основ явления жизни они привели. Но сначала давайте выделим в модели Уотсона и Крика только ее суть, самую главную «изюминку».

Итак, согласно модели Уотсона и Крика, молекула ДНК состоит из двух полимерных цепочек. Каждая цепочка построена из звеньев четырех сортов — А (адениновое), Г (гуаниновое), Т (тиминовое) и Ц (цитозиновое). Последовательность звеньев в каждой цепи может быть совершенно произвольна. Но эти последовательности в одной молекуле ДНК строго связаны друг с другом след

страница 3
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Скачать книгу "Самая главная молекула" (2.26Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Химический каталог

Copyright © 2009
(17.03.2016)