Биологический каталог




Биотехнология. Проблемы и перспективы

Автор Н.С. Егоров, В.Д.Самуилов, А.В. Олескин

в, например, цитохромами; 6) увеличение скорости переноса электронов между фотосистемами I и II и эффективности сопряжения между транспортом электронов и синтезом АТФ (М. М. Якубова, 1984).

Радикальным способом максимизации эффективности фотосинтеза было бы создание искусственных фотосистем, имитирующих основные блоки фотосинтетического аппарата живых организмов-, но внедрение подобных преобразователей энергии, по-видимому, отделено от нас несколькими десятилетиями.

Биотопливные элементы. На уровне поисковых разработок находятся биотоплйвные элементы, превращающие химическую энергию субстрата в электрическую. Примерами могут служить топливные элементы на основе окисления метанола в муравьиную кислоту с участием алкогольдегидрогеназы, муравьиной кислоты в СОг с участием формиатдегидрогеназы, глюкозы в глюконовую кислоту с участием глюкозооксидазы. Используют также каталитическую активность целых клеток, например Е. coli, Вас. subtilis, Ps. aeruginosa, в реакции окисления глюкозы.

Окисление субстрата происходит на электроде (аноде). Посредником между субстратом и анодом является биокатализатор. Существуют два пути дальнейшей передачи электронов на электрод: 1) с участием медиатора и 2) непосредственный транспорт электронов на электрод (А. И. Ярополов, И. В. Березин, 1985). Конструкция биотопливного элемента позволяет генерировать не только электрический ток, но и осуществлять важные химические превращения. Например, топливный элемент с глюкозооксида-зой и p-D-фруктофуранидазой переводит сахарозу в смесь фруктозы и глюконовой кислоты (С. Laane et al., 1984).

Ферментные электроды применяются не только в топливных элементах. Они представляют собой основной компонент биологических датчиков — биосенсоров, широко применяемых в химической промышленности, медицине, при контроле за биотехнологи-ческими процессами, в аналитических целях и т. д. Обычно используют системы с биокатализатором, иммобилизованным на поверхности мембранного электрода. Например, иммобилизацией пенициллиназы на обычном рН-электроде получают чувствительный биосенсор, регистрирующий концентрацию пенициллина (S. О. Enfors, N. Cleland, 1983). Иммобилизация клеток Е. coli на кислородном электроде дает биосенсор для измерения концентрации глутаминовой кислоты, а иммобилизация клеток Niiro-somonas sp. и Nitrobacter sp. на том же электроде — биосенсор на NH^ (I. Karube et al., 1983). На биосенсоре протекают

следующие превращения: NH^05°mQ^ NO2" Nitrobacter NO^ Разработаны биосенсоры для быстрой регистрации концентрации глюкозы в крови больного, что особенно важно при диагностике диабета.

§ 3. Биотехнология и медицина

Нет такого экспериментального подхода или исследовательского направления в биотехнологии, которые бы не получили применения в медицине. Вот почему столь многообразны связи между биотехнологией и самой гуманной из всех наук. Здесь мы остановимся лишь на основных моментах.

Антибиотики. Антибиотики — это специфические продукты жизнедеятельности, обладающие высокой физиологической а кти в™ ностью по отношению к определенным группам микроорганизмов и к злокачественным опухолям, избирательно задерживающих их рост или полностью подавляющих развитие (Н. С. Егоров, 1979). Далеко не все из этих соединений, число которых приближается к 5000, допущены для применения в медицине. К важнейшим антибиотикам терапевтического назначения принадлежат следующие их классы (табл. 7).

Приведенные классы антибиотиков не исчерпывают их многообразия, список их пополняется с каждым годом. Причины неослабевающего внимания к поиску новых антибиотиков, как видно из табл. 10, связаны с токсичностью существующих антибиотиков, аллергическими реакциями, вызываемыми ими, нарастанием устойчивости патогенных микроорганизмов к применяемым препаратам и, помимо этого, с необходимостью изыскания средств борьбы с возбудителями, против которых недостаточно эффективны известные ныне антибиотики. Основные пути поиска включают:

1. Испытание новых продуцентов. Так, с начала 80-х годов исследуют миксобактерии, продуцирующие большое количество антимикробных агентов (Н. Thierbach, N. Reichenbach, 1981).

2. Химическая модификация антибиотиков. Противомикроб-ные макролиды токсичны для человека. Например, гептаен амфо-терицин В, используемый по жизненным показаниям при тяжелых микозах, вызывает необратимые поражения почек. ПолуТаблица 7. Важнейшие классы антибиотиков терапевтического назначения (по НС. Егорову, 1979; Д.Ланчини, Ф. Па-ренти, 1985)

Класс Типичные антибиотики Продуценты На кого действует Механизм действия Трудности терапевтического применения

Р-Лактамные Аминоглико-зидные Тетрациклины Макролиды Полипептидные и депсипептидные Пенициллины, це-фалоспорины Стрептомицин, гентамицин, кана-мицин, тобрамицин, амикацин Одноименные антибиотики Антибактериальные: эритромицин Противогрибковые и антипротозой-ные: полиены Полимиксины, грамицидины, баци-трацины Грибы родов Penicillium , Cephalos-porum Актином

страница 66
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

Скачать книгу "Биотехнология. Проблемы и перспективы" (4.22Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Химический каталог

Copyright © 2009
(30.05.2023)