., .

of phosphorylation of biological molecules. Synthesis 11, 737752 (1977).

39. Ikehara M., Oht&uka E., Markham A. F. The synthesis of polynucleotides. Advan. Carbohyd. Chem. 36, 135213 (1979).

40. Letsinger R. L., Lunsford W. B. Synthesis of thymidine oligonucleotides by phosphite triester intermediates. J. Amer. Chem. Soc. 98, 36553661 (1976).

41. Ogilvie . K., Schifman A. L., Penney C. L. The synthesis of oligoribonucleo-tides. III. The use of silyl protecting groups in nucleoside and nucleotide chemistry. VIII. Can. J. Chem. 57, 22302238 (1979).

42. Lehninger A. L. Biochemistry, Chapter 37, Worth, New York, 1975.

43. Calvin M. Biopolymers: Origin, chemistry and biology. Angew. Chem., Int. Ed. Engl. 13, 121131 (1974).

44. Orgel L. ?., Lohrmann R. Prebiotic chemistry and nucleic acid replication. Acc. Chem. Res. 7, 368377 (1974).

45. Elias W. E. The natural origin of optically active compounds. J. Chem. Educ. 49, 448454 (1972).

46. Abernethy J. L. The concept of dissymetric worlds. J. Chem. Educ. 49, 455461 (1972).

47. Kuhn H. Self-organization of molecular systems and evolution of the genetic apparatus. Angew. Chem., Int. Ed. Engl. 11, 798820 (1972).

48. Helene C. Specific recognition of guanine bases in protein-nucleic acid complexes. FEBS Lett. 74, 1013 (1977).

49. MacElroy R. D., Coekelenbergh Y., Rein R. Macromolecular simulations as an approach to the study of the origins of self-replicating systems. Biosy-stems 9, 111119 (1977).

50. Fox /. L. Copolymer proposed as vital to evolution. Chem. Eng. News July 3, pp. 17, 18 (1978).

51. Usher D. A. Early chemical evolution of nucleic acids: A theoretical model Science 296, 311313 (1977).

52. Hine J. Bifunctional catalysis of a-hydrogen exchange of aldehydes and ketones. Acc. Chem. Res. 11, 17 (1978).

53. Bruice . C, Benkovic S. Bioorganic Mechanisms, Vol. 1, p. 134. Benjamin New York, 1966.

54. Cossee P. Stereoregularity in heterogeneous Ziegler-Natta catalysis Trans Faraday Soc 58, 12261232 (1962).

490

55. Cleland W. W. What limits the rate of an enzyme-catalyzed reaction? Acc. Chem. Res. 8, 145151 (1975).

56. Hanson K. R-, Rose I. A Interpretations of enzyme reaction stereospecificity. Acc. Chem. Res. 8, 110 (1975).

57. Schulz G. E., Schimer R. H. Principles of protein structure, Springer-Verlag, New York, 1979.

58. Ferscht A. Enzyme Structure and Mechanism, pp. 4448. Freeman, San Francisco, 1977.

59. Knowles J. R.. Albery W. J. Perfection in enzyme catalysis: The energetics of triosephosphate isomerase. Acc. Chem. Res. 10, 105111 (1977).

60. Alworth W. L. Stereochemistry and Its Application in Biochemistry, Chap. 3. Wiley-Interscience, New York, 1972.

61. Ogston A. G. Interpretation of experiments on metabolic processes, using isotopic tracer elements. Nature 162, 963 (1948).

62. Loewus F. A., Westheiiner F. H., Vennesland B. Enzymatic synthesis of the enantiomorphs of ethanol-l-d. J. Amer. Chem. Soc. 75, 50185023 (1953).

63. Bruice . C, Pandit V. K. The effect of genera] substitution ring size and rotamer distribution on the intramolecular nucleophilic catalysis of the hydrolysis of monophenyl esters of dibasic acids and the solvolysis of the intermediate anhydrides. J. Amer. Chem. Soc. 85, 58585865 (1960).

64. Jencks W. P. Binding energy, specificity, and enzymic catalysis: The circle effect. Adv. Enzymol. 43, 219410 (1975).

65. Storm D. R., Koshland D. E., Jr. A source for the special catalytic power of enzymes: Orbital steering. Proc. Nat. Acad. Sci. USA 66, 445452 (1970).

66. Bruice . C, Brown A., Harris D. C. On the concept of orbital steering in catalytic reactions. Proc. Nat. Acad. Sci. USA 68, 658661 (1971).

67. Storm D. R., Koshland D. E., Jr. An indication of the magnitude of orientation factors in esterification J. Amer. Chem. Soc. 94, 58055814 (1972).

68. Storm D. R., Koshland D. E., Jr. Effect of small changes in orientation on reaction rate. J. Amer. Chem. Soc. 94, 58155825 (1972).

69. Philipp M., Tsai I. H., Bender M. L. Comparison of the kinetic specificity of subtilisin and thiolsubtilisin toward n-alkyl p-nitropheny] esters. Biochemistry 18, 37693773 (1979).

70. Page M. /., Jencks W. P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and chelate effect. Proc. Nat. Acad. Sci. USA 68, 16781683 (1971).

71. Swain C. G., Brown J. F. Concerted displacement reactions. VII. The mechanism of acid base catalysis in non-aqueous solvents. J. Amer. Chem. Soc. 74, 25342537 (1952).

72. Higuchi ., Takechi H., Pitman I. H., Fung H. L. Intramolecular bifunctional facilitation in complex molecules, combined nucleophilic and general acid participation in hydrolysis of hexachlorophene monosuccinate. J. Amer. Chem. Soc. 93, 539540 (1971).

73. Cunningham B. A., Schmir G. L. lminolactones. II. Catalytic effects on the nature of the products of hydrolysis. J. Amer. Chem. Soc. 88, 551558 (1966).

74. Lee Y. N., Schmir G. L. Concurrent general acid and general base catalysis in the hydrolysis of an imidate ester. 1. Monofunctional catalysis. J. Amer. Chem. Soc. 100, 67006707 (1978).

75. Lee Y. N., Schmir G. L. Concurrent general acid and general base catalysis in the hydrolysis of an imidate ester 2. Bifunctional catalysis. J. Amer. Chem. Soc. 101, 30263035 (1979).

76. Jencks W. P. Requirements for general acid-base catalysis of complex reactions. J. Amer. Chem. Soc. 94, 47314732 (1972).

77. Blow D. M. Structure and mechanism of chymotrypsin. Acc. Chem. Res. 9, 145152 (1976).

78. Blow D. M., Birktoft J. J., Hartley B. S. Role of a buried acid group in the mechanism of action of chymotrypsin. Nature 221, 337340 (1969).

491

79. Sigler . ., Blow D. M., Matthews B. W., Henderson R. Structure of crystalline a-chymotrypsin II. A preliminary report including a hypothesis for the activation mechanism. J. Mol. Biol. 35, 143164 (1968). 0. Garavito R. M., Rossmann M. G., Argos P., Eventoff W. Convergence of active center geometries. Biochemistry 16, 50655071 (1977).

81. Wright H. T. Activation of chymotrypsinogen-A. An hypothesis based upon comparison of the crystal structures of chymotrypsinogen-A and a-chymotrypsin. J. Mol. Biol. 79, 1323 (1973).

82. Hunkapiller M. U7., Forgac M. D., Richards J. H. Mechanism of action of serine proteases: Tetrahedral intermediate and concerted proton transfer. Biochemistry 15, 55815588 (1976).

3. Kaplan H., Symonds V. ., Dugas H., Whitaker D. R. A comparison of properties of a-lytic protease of Sorangium sp. and porcine elastase. Can. J. Chem 47, 649658 (1970). N- Hunkapiller M. U7., Smallcombe S. H., Whitaker D. R., Richards I. H. Carbon nuclear magnetic resonance studies of the histidine residue in a-lytic protease. Implication for the catalytic mechanism of serine proteases. Biochemistry 12, 47324743 (1973).

5. Markley I. L., Ibanez I. B. Zymogen activation in serine proteinases. Proton magnetic resonance pH titration studies of the two histidines of bovine chymotrypsinogen A and chymotrypsin Aa. Biochemistry 17, 46274639

(1978) .

66. Robillard G., Shulinan R. G. High resolution nuclear magnetic resonance study of the histidine-aspartate hydrogen bond in chymotrypsin and chymotrypsinogen. J. Mol. Biol. 71, 507511 (1972).

67. Brayer G. D., Delbaere L. T. J., lames M. N. G. Molecular structure of the a-lytic protease from Myxobacter 495 at 2.8 A resolution. J. Mol. Biol. 131, 743775 (1979).

88. Bachovchin W. W, Roberts J. D. Nitrogen-15 nuclear magnetic resonance spectroscopy. The state of histidine in the catalytic triad of a-lytic protease. Implications for the charge-relay mechanism of peptide bond cleavage by serine proteases. J. Amer. Chem. Soc. 100, 80418047 (1978).

89. Fink A. L., Meehan P. Detection and accumulation of tetrahedral intermediates in elastase catalysis. Proc. Nat. Acad. Sci. USA 76, 15661569

(1979) .

90. Porubcan M. A., Westler W. M., Ibanez I. ., Markley J. L. (Diisopropylphos-phoryl) serine proteinases. Proton on phosphorus-31 nuclear magnetic reso-nance-pH titration studies. Biochemistry 18, 41084115 (1979).

91. Kraut I. Serine proteases: Structure and mechanism of catalysis. Annu. Rev. Biochem. 46, 331358 (1977).

92. Komiyama M., Bender M. L. Do cleavages of amides by serine proteases occur through a stepwise pathway involving tetrahedral intermediates? Proc. Nat. Acad. Sci. USA 76, 557560 (1979).

93. Bruice . C, Slurtevant J. M. Imidazole catalysis. V. The intramolecular participation of the imidazolyl group in the hydrolysis of some esters and the amide of y-(4-imidazolyl)-butyric acid and 4- (2'-acetoxyethyl) -imidazole. J. Amer. Chem. Soc. 81, 28602870 (1959).

94. Rogers G. A., Bruice . C. Isolation of a tetrahedral intermediate in an acetyl transfer reaction. J. Amer. Chem. Soc. 95, 44524453 (1973).

95. Rogers G. A., Bruice . C. Control of modes of intramolecular imidazole catalysis of ester hydrolysis by steric and electronic effects. J. Amer. Chem Soc. 96, 24632472 (1974).

96. Rogers G. A., Bruice . C. Synthesis and evaluation of a model for the so-called charge-relay system of the serine esterases. J. Amer. Chem. Soc. 96, 24732480 (1974).

97. Rogers G. A., Bruice . C. The mechanisms of acyl group transfer from a tetrahedral intermediate. J. Amer. Chem. Soc. 96, 24812488 (1974).

98. Komiyama M., Bender M. L. General base-catalyzed ester hydrolysis as a model of the charge-relay system. Bioorg. Chem. 6, 1320 (1977).

492

99. Byers L. D., Koshland D. E., Jr. On the mechanism of action of methyl chymotrypsin. Bioorg. Chem. 7, 1533 (1978).

100. Belke . /., Su S. . K, Shafer I. A. Imidazole catalyzed displacement of an amine from an amide by a neighbouring hydroxyl group. A model for the acylation of chymotrypsin. J. Amer. Chem. Soc. 93, 45524561 (1971).

101. Hein G. E., Niemann C. Steric course and specificity of a-chymot

81
< > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

" " (8.62Mb)


[]  []  [ ]  [ ]


Rambler's Top100

Copyright 2009
(17.10.2017)