Биологический каталог




Нейрохимия: Учебник для биологических и медицинских вузов

Автор И.П.Ашмарин, А.Е.Антипенко, В.В.Ашапкин, Г.Г.Вольский, С.А.Дамбинова и

ет относить к белкам, — так называемые протопептиды с Мг 20-50 кД. Многие из них глико-зилированы.

Наконец, описанный в разделе 3.2 белок поверхности нейронов р-АРР также является источником белка-регулятора. Отщепляемая внешняя часть белка выходит в межклеточную жидкость и индуцирует образование новых отростков и нервных окончаний, участвуя в формировании памяти. При болезни Альцгеймера этот процесс искажается (см. также главу о нейрохимических основах психических болезней).

89

3.6 БЕЛКИ МИЕЛИНА

Белковый состав миелина своеобразен, но существенно проще, чем в нейронах и глиальных клетках.

В миелине велика доля катионного белка — КБМ (около 30 процентов). Он представляет собой относительно небольшой полипептид с Мг = 16-18 кД. КБМ содержит значительную долю диаминокислот (около 20 процентов) и в то же время около половины составляющих его аминокислот — неполярные. Это обеспечивает, с одной стороны, тесный контакт с гидрофобными компонентами липидов миелина, а с другой стороны, определяет его способность к образованию ионных связей с кислыми группировками липидов. Подробнее функции КБМ будут рассмотрены в главе о липидах в связи с общим анализом структуры миелиновых мембран.

Необычайно высокой гидрофобностью характеризуются так называемые протеолипидные белки Фолча, составляющие большую часть остальных белков миелина. В свою очередь, главный из этих белков — липофилин (Мг = 28 кД), в котором 2/3 составляющих аминокислот — неполярные. Интересна определенная избирательность контактов липофилина с липидами, например, вытеснение холестерина из его окружения. Полагают, что это связано с особенностями вторичной структуры липофилина. Подробнее его роль в формировании миелиновых оболочек рассмотрена опять-таки в главе о липидах.

Довольна велика также доля так называемого белка Вольф-грама (около 15% белков) — кислого протеолипида, довольно богатого остатками дикарбоновьгх аминокислот, и, в то же время, содержащего около половины остатков неполярных аминокислот.

Наконец, из нескольких десятков других белков миелина отметим миелинассоциированный гликопротеин (МАГ), расположенный на экстраделлюлярной поверхности мембран; он встречается, кроме того, в олигодендроцитах до миелинизации и в миелине периферической нервной системы. В ЦНС человека он представлен тремя полипептидными цепями с Мг=92, 107, 113 кД, а в периферической нервной системе — одним белком с Мг=107 кД. МАГ относится к гликопротеинам с относительно низким содержанием углеводных остатков — около 30% от массы молекулы, но содержит характерный для гликопротеинов набор углеводов: N-ацетилглюкозамин, N-ацетилнейраминовая кислота, фукоза, манноза и галактоза. Для белковой части молекулы характерно высокое содержание глутаминовой и

90

асларагиновой кислот.

Функции белка Вольфграма и МАГ неизвестны, если не считать общих соображений об их участии в организации структуры миелиновых оболочек.

3.7 НЕЙРОСПЕЦИФИЧЕСКИЕ БЕЛКИ ГЛИИ

Подробно описанный в разделе 3.1 белок S-100 содержится и в нейронах, и в глиальных клетках, причем доля его в последних велика — около 85%.

В 1967 г. из а2-глобулинов мозга был выделен нейроспеци-фический а2-гликопротеин с молекулярной массой 45 кД. В мозге человека он появляется на 16-й неделе эмбрионального развития. Углеводные компоненты его включают глюкозамин, ман-нозу, глюкозу, галактозу, галактозамин и N-ацетилнейрамино-вую кислоту. а2-гликопротеин локализован только в астроцитах, но отсутствует в нейронах, олигодендроцитах и в клетках эндотелия. Поэтому его можно рассматривать как один из специфических маркеров астроцитов.

Другой белок опять-таки характерен только для клеток глии. Он был выделен из богатых фиброзными астроцитами областей головного мозга человека, а впоследствии — в значительно больших количествах — из мозга больных множественным склерозом (фибральным глиозом). Это вещество было названо глиаль-ным фибриллярным кислым белком (GFA). Он специфичен только для ЦНС, а в ПНС он не обнаружен. Содержание его в белом веществе головного мозга превышает таковое в сером веществе. В онтогенезе мышей максимальное содержание GFA наблюдается между 10-м и 14-м днями постнатального развития, т.е. совпадает по времени с периодом миелинизации и пиком дифференцировки астроцитов. Молекулярная масса белка составляет 40-54 кД. Глиальная локализация этого белка также позволяет использовать его как "маркерный" белок для этих клеток.

Функции а2-гликопротеина и белка GFA неизвестны.

Что касается белков микроглии, то следует иметь в виду участие этих клеток в построении миелина. Многие из белков миелина, описанные в предыдущем разделе, выявлены в микроглии.

В глии представлены также многие рецепторные и ферментные белки, участвующие в синтезе вторичных мессенджеров, предшественников нейромедиаторов и других регуляторных соединений, которые могут быть отнесены к нейроспецифиче-ским. Часть из них охарактеризована в следующих главах.

91

3-8 ИНТЕНСИВНОСТЬ МЕТАБОЛИЗМА БЕЛКОВ В РАЗЛИЧНЫХ ОТДЕЛАХ НЕРВНОЙ СИСТЕМЫ

Современное представление о динамическом состоянии белков в нервной ткани было установлено благодаря применению изотопов А.В.Палладиным, Д.Рихтером, АЛайтой и другими исследователями. Начиная с конца 50-х и в течение 60-х годов при изучении метаболизма белка использовались различные предшественники их биосинтеза (аминокислоты, глюкоза, ацетат и другие), меченые 14С, 3Н, 35S. При этом было показано, что белки и аминокислоты в головном мозге взрослого животного метаболируют, в общем, более интенсивно, чем в других органах и тканях.

Например, в опытах in vivo при применении в качестве предшественника равномерно меченой 14С-1-6-глюкозы оказалось, что по интенсивности образования аминокислот за счет глюкозы ряд органов можно расположить в следующем порядке:

головной мозг > кровь > печень > селезенка и легкие > мышца.

Аналогичная картина наблюдалась при использовании и других меченых предшественников. Показано, что из 14С-ацетата в головном мозге интенсивно синтезируется углеродный скелет аминокислот, особенно моноаминодикарбоновых кислот и прежде всего глутамата; из моноаминомонокарбновых кислот достаточно интенсивно образуются глицин, аланин, серии и др. Следует отметить, что особое место в метаболизме аминокислот занимает глутамат. В опытах in vitro с использованием меченого глутамата показано, что если в реакционную среду гомогената мозга добавить только одну глутаминовую кислоту, то она может быть источником образования 90-95% аминокислот.

Были проведены многочисленные исследования по изучению различий в интенсивности метаболизма суммарных и индивидуальных белков с помощью меченых предшественников. В опытах in vivo при использовании 14С-глутамата было показано, что он включается в 4-7 раз интенсивнее в белки серого вещества, чем белого. Во всех случаях интенсивность обмена суммарных белков серого вещества больших полушарий мозга и мозжечка оказалась значительно выше, чем белого вещества тех же отделов мозга, какой бы предшественник ни применялся при исследовании. При этом различие интенсивности обмена суммарных белков серого вещества по сравнению с белками белого вещества имеет место не только в норме, но, как правило, и при различных функциональных состояниях организма.

Проводились также исследования по изучению различий в

92

интенсивности включения меченых предшественников в суммарные белки центральной и периферической нервной систем. Оказалось, что несмотря на существенные различия в составе, метаболизме и функциональной деятельности различных отделов ЦНС и ПНС, а также на сложность и гетерогенность белков, входящих в их состав, суммарные белки ЦНС взрослых животных обновляются значительно интенсивнее, чем суммарные белки ПНС.

Много исследований посвящено метаболизму белков в различных отделах головного мозга. Например, при изучении распределения радиоактивности (в %) в головном мозге после введения 14С-глутамата оказалось, что на долю серого вещества больших полушарий приходится 67,5 радиоактивности, мозжечка — 16,4, продолговатого мозга — 4,4, на долю других отделов головного мозга — около 11,7. В опытах in vivo при введении взрослым животным различных предшественников, а именно 14С-глутамата, 14С-1-6-глюкозы, 14С-2-ацетата, оказалось, что по интенсивности включения метки в суммарные белки различные отделы нервной системы располагаются в такой последовательности: серое вещество больших полушарий и мозжечка

> таламус > зрительный бугор > средний и промежуточный мозг

> Варолиев мост > продолговатый мозг > белое вещество больших полушарий и мозжечка > спинной мозг > седалищный нерв

> миелин.

Проводились также исследования, посвященные изучению интенсивности обмена белков в различных отделах ЦНС с использованием авторадиографического метода. Получена аналогичная картина: наиболее интенсивное включение метки имело место в белках серого вещества больших полушарий и мозжечка, медленное — в спинном мозге и еще более медленное — в белках седалищного нерва. Что же касается подкорковых образований, то интенсивность обмена их белков была средней между скоростью обновления белков серого и белого вещества больших полушарий и мозжечка. Между отдельными подкорковыми образованиями наблюдаются менее существенные различия, чем между метаболической активностью белого и серого вещества.

Исследовались также суммарные белки различных областей (долей) коры больших полушарий — лобной, височных, теменной и затылочной. По данным Вэлша и В.А.Палладина, более высокой обновляемостью обладают белки сенсорной области коры, а более низкой — белки височной доли коры больших полушарий. Эти же авторы показали, что более высокая обнов-

93

ляемость белков характерна для филогенетически более молодых и функционально более активных структурных образований мозга.

На фоне, в общем, высокой обновляемое™ белков мозга особого упоминания заслуживают немногие довольно инертные белки. К ним относятся гистоны нейронов неокортекса — ка-тионные белки хроматина этих клеток. Во взрослом организме нейроны-неокортекса не разм

страница 19
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

Скачать книгу "Нейрохимия: Учебник для биологических и медицинских вузов" (21.4Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Rambler's Top100 Химический каталог

Copyright © 2009
(21.07.2019)